1
Views
4
CrossRef citations to date
0
Altmetric
DNA Dynamics and Chromosome Structure

A Novel Role for DNA Photolyase: Binding to DNA Damaged by Drugs Is Associated with Enhanced Cytotoxicity in Saccharomyces cerevisiae

, &
Pages 8071-8077 | Received 22 Jun 1994, Accepted 25 Aug 1994, Published online: 30 Mar 2023

References

  • Bankmann, M., L. Prakash, and S. Prakash. 1992. Yeast RAD14 and human xeroderma pigmentosum group A DNA-repair genes encode homologous proteins. Nature (London) 355:555–558.
  • Barry, M. A., C. A. Behnke, and A. Eastman. 1990. Activation of programmed cell death (apoptosis) by cisplatin, other anticancer drugs, toxins and hyperthermia. Biochem. Pharmacol. 40:2353–2362.
  • Bennett, C. B., A. L. Lewis, K. K. Baldwin, and M. A. Resnick. 1993. Lethality induced by a single site-specific double-strand break in a dispensable yeast plasmid. Proc. Natl. Acad. Sci. USA 90:5613–5617.
  • Berdal, K. G., M. Bjørås, S. Bjelland, and E. Seeberg. 1990. Cloning and expression in Escherichia coli of an alkylbase DNA glycosylase from Saccharomyces cerevisiae; a homologue to the bacterial alkA gene. EMBO J. 9:4563–4568.
  • Brookes, P., and P. Lawley. 1961. The reaction of mono- and di-functional alkylating agents with nucleic acids. Biochem. J. 80:496–503.
  • Brown, S., P. Kellet, and S. Lippard. 1993. Ixr1, a yeast protein that binds to platinated DNA and confers sensitivity to cisplatin. Science 261:603–605.
  • Chen, J., B. Derfler, and L. Samson. 1990. Saccharomyces cerevisiae 3-methyladenine DNA glycosylase has homology to the AlkA glycosylase of E. coli and is induced in response to DNA alkylation damage. EMBO J. 9:4569–4575.
  • Chu, G. 1994. Cellular responses to cisplatin: the roles of DNA binding proteins and DNA repair. J. Biol. Chem. 269:787–790.
  • Chu, G., and P. Berg. 1987. DNA crosslinked by cisplatin: a new probe for the DNA repair defect in xeroderma pigmentosum. Mol. Biol. Med. 4:277–290.
  • Chu, G., and E. Chang. 1988. Xeroderma pigmentosum group E cells lack a nuclear factor that binds to damaged DNA. Science 242:564–567.
  • Chu, G., and E. Chang. 1990. Cisplatin-resistant cells express increased levels of a factor that recognizes damaged DNA. Proc. Natl. Acad. Sci. USA 87:3324–3327.
  • Elble, R. 1992. A simple and efficient procedure for transformation of yeasts. BioTechniques 13:18–20.
  • Friedberg, E. 1988. Deoxyribonucleic acid repair in the yeast Saccharomyces cerevisiae. Microbiol. Rev. 52:70–102.
  • Friedberg, E. C. 1985. DNA repair, p. 505–574. W. H. Freeman & Co., New York.
  • Gulyas, K., and T. Donahue. 1992. SSL2, a suppressor of a stem-loop mutation in the HIS4 leader encodes the yeast homolog of human ERCC-3. Cell 69:1031–1042.
  • Hansson, J., and R. Wood. 1989. Repair synthesis by human cell extracts of DNA damaged by eis- and trans-diamminedichloro-platinum(II). Nucleic Acids Res. 17:8073–8091.
  • Hoeijmakers, J. H. J. 1993. Nucleotide excision repair I: from E. coli to yeast. Trends Genet. 9:173–177.
  • Hwang, B. J., and G. Chu. 1993. Purification and characterization of a protein that binds to damaged DNA. Biochemistry 32:1657–1666.
  • Hwang, B. J., and G. Chu. Unpublished data.
  • Kataoka, H., and Y. Fujiwara. 1991. UV damage-specific DNA-binding protein in xeroderma pigmentosum complementation group E. Biochem. Biophys. Res. Commun. 175:1139–1143.
  • Keeney, S., A. Eker, T. Brody, W. Vermuelen, D. Bootsma, J. Hoeijmakers, and S. Linn. 1994. Correction of the DNA repair defect in xeroderma pigmentosum group E by injection of a DNA damage-binding protein. Proc. Natl. Acad. Sci. USA 91:4053–4056.
  • Keeney, S., H. Wein, and S. Linn. 1992. Biochemical heterogeneity in xeroderma pigmentosum complementation group E. Mutat. Res. 273:49–56.
  • Kohn, K., C. Spears, and P. Doty. 1966. Inter-strand crosslinking of DNA by nitrogen mustard. J. Mol. Biol. 19:266–288.
  • Laudet, V., D. Stehelin, and H. Clevers. 1993. Ancestry and diversity of the HMG box superfamily. Nucleic Acids Res. 21:2493–2501.
  • Legerski, R., and C. Peterson. 1992. Expression cloning of a human cDNA repair gene involved in xeroderma pigmentosum group C. Nature (London) 359:70–73.
  • Li, Y. F., S.-T. Kim, and A. Sancar. 1993. Evidence for lack of DNA photoreactivating enzyme in humans. Proc. Natl. Acad. Sci. USA 90:4389–4393.
  • Lippard, S. 1987. Chemistry and molecular biology of platinum anticancer drugs. Pure Appl. Chem. 59:731–742.
  • Panigrahi, G., and I. Walker. 1991. Use of monoacetyl-4-hydroxy-amino-quinoline 1-oxide to probe contacts between guanines and protein in the minor and major grooves of DNA: interaction of Escherichia coli integration host factor with its recognition site in the early promoter and transposition enhancer of bacteriophage Mu. Biochemistry 30:9761–9767.
  • Patterson, M., and G. Chu. 1989. Evidence that xeroderma pigmentosum cells from complementation group E are deficient in a homolog of yeast photolyase. Mol. Cell. Biol. 9:5105–5112.
  • Payne, A., and G. Chu. Xeroderma pigmentosum group E binding factor recognizes a broad spectrum of DNA damage. Mutat. Res., in press.
  • Rupert, C. S. 1975. Enzymatic photoreactivation: overview, p. 73–87. In P. C. Hanawalt, and J. K. Setlow (ed.), Molecular mechanisms for repair of DNA. Plenum Press, New York.
  • Sancar, A., K. A. Franklin, and G. B. Sancar. 1984. Escherichia coli DNA photolyase stimulates uvrABC excision nuclease in vitro. Proc. Natl. Acad. Sci. USA 81:7397–7401.
  • Sancar, G. Personal communication.
  • Sancar, G. 1990. DNA photolyases: physical properties, action mechanism, and roles in DNA repair. Mutat. Res. 236:147–160.
  • Sancar, G., and F. Smith. 1989. Interactions between yeast photolyase and nucleotide excision repair proteins in Saccharomyces cerevisiae and Escherichia coli. Mol. Cell. Biol. 9:4767–4776.
  • Sancar, G. B. 1985. Sequence of the Saccharomyces cerevisiae PHR1 gene and homology of the PHR1 photolyase to E. coli photolyase. Nucleic Acids Res. 13:8231–8246.
  • Scherly, D., T. Nouspikel, J. Corlet, C. Ucla, A. Bairoch, and S. Clarkson. 1993. Complementation of the DNA repair defect in xeroderma pigmentosum group G cells by a human cDNA related to yeast RAD2. Nature (London) 363:182–185.
  • Schild, D., J. Johnston, C. Chang, and R. K. Mortimer. 1984. Cloning and mapping of Saccharomyces cerevisiae photoreactivation gene PHR1. Mol. Cell. Biol. 4:1864–1870.
  • Sebastian, J., B. Kraus, and G. Sancar. 1990. Expression of the yeast PHR1 gene is induced by DNA-damaging agents. Mol. Cell. Biol. 10:4630–4637.
  • Singer, B., and J. Kusmierek. 1982. Chemical mutagenesis. Annu. Rev. Biochem. 51:655–693.
  • Sorenson, C. M., M. A. Barry, and A. Eastman. 1990. Analysis of events associated with cell cycle arrest at G2 phase and cell death induced by cisplatin. J. Natl. Cancer Inst. 82:749–755.
  • Spivak, G., S. A. Leadon, J. M. Vos, S. Meade, P. C. Hanawalt, and A. K. Ganesan. 1988. Enhanced transforming activity of pSV2 Plasmids in human cells depends upon the type of damage introduced into the plasmid. Mutat. Res. 193:97–108.
  • Takao, M., M. Abramic, M. Moos, V. Otrin, J. Wootton, M. McLenigan, A. Levine, and M. Protic. 1993. A127 kDa component of a UV-damaged DNA-binding complex, which is defective in some xeroderma pigmentosum group E patients, is homologous to a slime mold protein. Nucleic Acids Res. 21:4111–4118.
  • Tanaka, K., N. Miura, I. Satokata, I. Miyamoto, M. C. Yoshida, Y. Satoh, S. Kondo, A. Yasui, H. Okayama, and Y. Okada. 1990. Analysis of a human DNA excision repair gene involved in group A xeroderma pigmentosum and containing a zinc-finger domain. Nature (London) 348:73–76.
  • Weber, C., E. Salazar, S. Stewart, and L. Thompson. 1990. ERCC2: cDNA cloning and molecular characterization of a human nucleotide excision repair gene with high homology to yeast RAD3. EMBO J. 9:1437–1447.
  • Weeda, G., R. Van Ham, W. Vermeulen, D. Bootsma, A. van der Eb, and J. Hoeijmakers. 1990. A presumed DNA helicase encoded by ERCC-3 is involved in the human repair disorders xeroderma pigmentosum and Cockayne's syndrome. Cell 62:777–791.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.