2
Views
10
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Identification of Residues of the H-Ras Protein Critical for Functional Interaction with Guanine Nucleotide Exchange Factors

, &
Pages 1104-1112 | Received 10 Sep 1993, Accepted 29 Oct 1993, Published online: 30 Mar 2023

REFERENCES

  • Ballester, R., T. Michaeli, K. Ferguson, H.-P. Xu, F. McCormick, and M. Wigler. 1989. Genetic analysis of mammalian GAP expressed in yeast. Cell 59:681–686.
  • Barbacid, M. 1987. ras genes. Annu. Rev. Biochem. 56:779–827.
  • Becker, D. M., and L. Guarente. 1991. High-efficiency transformation of yeast by electroporation. Methods Enzymol. 194:182–187.
  • Bonfini, L., C. A. Karlovich, C. Dasgupta, and U. Banerjee. 1992. The Son of Sevenless gene product: a putative activator of ras. Science 255:603–606.
  • Bowtell, D., P. Fu, M. Simon, and P. Senior. 1992. Identification of murine homologues of the Drosophila Son of Sevenless gene: potential activators of ras. Proc. Natl. Acad. Sci. USA 89:6511–6515.
  • Broek, D., N. Samiy, O. Fasano, A. Fujiyama, F. Tamanoi, J. Northup, and M. Wigler. 1985. Differential activation of adenylate cyclase by wild-type and mutant RAS proteins. Cell 41:763–769.
  • Broek, D., T. Toda, T. Michaeli, L. Levin, C. Birchmeier, M. Zoller, S. Powers, and M. Wigler. 1987. The S. cerevisiae CDC25 gene product regulates the RAS/adenylate cyclase pathway. Cell 48:789–799.
  • Cen, H., A. G. Papageorge, R. Zippel, D. R. Lowy, and K. Zhang. 1992. Isolation of multiple mouse cDNAs with coding homology to Saccharomyces cerevisiae CDC25: identification of a region related to Bcr, Vav, Dbl, and CDC24. EMBO J. 11:4007–4015.
  • Chevray, P. M., and D. Nathens. 1992. Protein interaction cloning in yeast: identification of mammalian proteins that react with the leucine zipper of Jun. Proc. Natl. Acad. Sci. USA 89:5789–5793.
  • Chien, C.-T., P. L. Bartel, R. Sternglanz, and S. Fields. 1991. The two-hybrid system: a method to identify and clone genes for proteins that interact with a protein of interest. Proc. Natl. Acad. Sci. USA 88:9578–9582.
  • Crechet, J.-B., P. Poullet, M.-Y. Mistou, A. Parmaeggiani, J. Camonis, E. Boy-Marcotte, F. Damak, and M. Jacquet. 1990. Enhancement of GDP-GTP exchange of RAS proteins by the carboxyl terminal domain of SCD25. Science 248:866–870.
  • Der, C. J., T. Finkel, and G. M. Cooper. 1986. Biological and biochemical properties of human rasH genes mutated at codon 61. Cell 44:167–176.
  • Fields, S., and O.-K. Song. 1989. A novel genetic system to detect protein-protein interactions. Nature (London) 340:245–246.
  • Furth, M. E., L. J. Davis, B. Fleurdelys, and E. M. Scolnick. 1982. Monoclonal antibodies to the p21 products of the transforming gene of Harvey murine sarcoma virus and of the cellular ras gene family. J. Virol. 43:294–304.
  • Hattori, S., D. J. Clanton, T. Satch, S. Nakumura, Y. Kaziro, M. Kawakita, and T. Y. Shih. 1987. Neutralizing monoclonal antibody against ras oncogene product p21 which impairs guanine nucleotide exchange. Mol. Cell. Biol. 7:1999–2002.
  • Howe, L. R., and C.-J. Marshall. 1993. Identification of amino acids in p21 ras involved in exchange factor interaction. Oncogene 8:2583–2590.
  • Hsiung, Y., and J. Nitiss. Personal communication.
  • Hughes, D. A., Y. Fukui, and M. Yamamoto. 1990. Homologous activators of Ras in fission and budding yeast. Nature (London) 344:355–357.
  • Jones, S., M.-L. Vignais, and J. R. Broach. 1991. The CDC25 protein of Saccharomyces cerevisiae promotes exchange of guanine nucleotides bound to Ras. Mol. Cell. Biol. 11:2641–2646.
  • Krengel, U., I. Schlichting, A. Scherer, R. Schumann, M. Frech, J. John, K. Wolfgang, E. F. Pai, and A. Wittinghofer. 1990. Three-dimensional structures of H-ras p21 mutants: molecular basis for their inability to function as signal switch molecules. Cell 62:539–548.
  • Lai, C.-C., D. Broek, and S. Powers. 1993. Influence of guanine-nucleotides on complex formation between RAS and Cdc25 proteins. Mol. Cell. Biol. 13:1345–1352.
  • Langen, R., T. Schweins, and A. Warshel. 1992. On the mechanism of guanosine triphosphate hydrolysis in ras p21 proteins. Biochemistry 31:8691–8696.
  • Liu, B. X., W. Wei, and D. Broek. 1993. The catalytic domain of the mouse sos1 gene product activates Ras proteins in vivo and in vitro. Oncogene 8:3081–3084.
  • Lowy, D. R., and B. M. Willumsen. 1993. Function and regulation of RAS. Annu. Rev. Biochem. 62:851–891.
  • Maniatis, T., E. F. Fritsch, and J. Sambrook. 1982. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Martegani, E., M. Vanoni, R. Zippel, P. Coccetti, R. Brambilla, C. Ferrari, E. Sturani, and L. Alberghina. 1992. Cloning by functional complementation of a mouse cDNA encoding a homologue of CDC25, a Saccharomyces cerevisiae Ras activator. EMBO J. 11:2151–2157.
  • McCormick, F. 1989. ras GTPase activating protein: signal transmitter and signal terminator. Cell 56:5–8.
  • Milburn, N., L. Tong, A. de Vos, A. Brunger, Z. Yamaizumi, S. Nishimura, and S.-H. Kim. 1990. Molecular switch for signal transduction: structural differences between active and inactive forms of protooncogenic ras proteins. Science 247:939–945.
  • Mistou, M.-Y., E. Jacquet, P. Poullet, H. Rensland, P. Gideon, I. Schlichting, A. Wittinghofer, and A. Parmeggiani. 1992. Mutations of Ha-ras p21 that define important regions for the molecular mechanism of the SDC25 c-domain, a guanine nucle otide dissociation stimulator. EMBO J. 11:2391–2397.
  • Munder, T., and P. Furst. 1992. The Saccharomyces cerevisiae CDC25 gene product binds specifically to catalytically inactive Ras proteins in vivo. Mol. Cell. Biol. 12:2091–2099.
  • Pai, E. F., U. Krengel, G. A. Petsko, R. S. Goody, W. Kabsch, and A. Wittinghofer. 1990. Refined crystal structure of the triphosphate conformation of H-ras p21 at 1.35 A resolution: implications for the mechanism of GTP hydrolysis. EMBO J. 9:2351–2359.
  • Pilz, R. B., R. C. Willis, and G. R. Boss. 1984. The influence of ribose 5-phosphate availability on purine synthesis of cultured human lymphoblasts and mutagen-stimulated lymphocytes. J. Biol. Chem. 259:2927–2935.
  • Powers, S., E. Gonzales, T. Christensen, J. Cubert, and D. Broek. 1991. Functional cloning of BUD5, a CDC25-related gene from S. cerevisiae that can suppress a dominant-negative RAS2 mutant. Cell 65:1225–1231.
  • Powers, S., K. O'Neill, and M. Wigler. 1989. Dominant yeast and mammalian RAS mutants that interfere with the CDC25-dependent activation of wild-type RAS in Saccharomyces cerevisiae. Mol. Cell. Biol. 9:390–395.
  • Robinson, L. C., J. B. Gibbs, M. S. Marshall, I. S. Sigal, and K. Tatchell. 1987. CDC25: a component of the RAS-adenylate cyclase pathway in Saccharomyces cerevisiae. Science 235:1218–1221.
  • Sanger, F., S. Nicklen, and A. R. Coulson. 1977. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74:5463–5467.
  • Schiestl, R. H., and R. D. Gietz. 1989. High efficiency transformation of intact yeast cells using single-stranded nucleic acids as a carrier. Curr. Genet. 16:339–346.
  • Segal, M., B. M. Willumsen, and A. Levitzki. 1993. Residues crucial for Ras interaction with GDP-GTP exchangers. Proc. Natl. Acad. Sci. USA 90:4725–4729.
  • Sherman, F., G. R. Fink, and J. B. Hicks (ed.). 1986. Laboratory course manual for methods in yeast genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Shou, C., C. L. Farnsworth, B. G. Neel, and L. A. Feig. 1992. Molecular cloning of cDNAs encoding a guanine-nucleotidereleasing factor for Ras p21. Nature (London) 358:351–354.
  • Sigal, I. S., J. B. Gibbs, J. S. D'Alonzo, and E. M. Scolnick. 1986. Identification of effector residues and a neutralizing epitope of Ha-ras-encoded p21. Proc. Natl. Acad. Sci. USA 83:4725–4729.
  • Sikorski, R. S., and J. D. Boeke. 1991. In vitro mutagenesis and plasmid shuffling: from cloned gene to mutant yeast. Methods Enzymol. 194:302–318.
  • Smith, D. B., and K. S. Johnson. 1988. Single-step purification of polypeptides expressed in E. coli as a fusion with glutathione S-transferase. Gene 67:31–40.
  • Stacey, D. W., L. A. Feig, and J. B. Gibbs. 1991. Dominant inhibitory Ras mutants selectively inhibit the activity of either cellular or oncogenic Ras. Mol. Cell. Biol. 11:4053–4064.
  • Stryer, L. 1986. Cyclic GMP cascade of vision. Annu. Rev. Neurosci. 9:87–199.
  • Verrotti, A. C., J. B. Crechet, F. Di Blasi, G. Seidita, M. G. Mirisola, C. Kavounis, V. Nastopoulos, E. Burden, E. De Vendittis, A. Parmeggiani, and O. Fasano. 1992. RAS residues that are distant from the GDP binding site play a critical role in dissociation factor-stimulated release of GDP. EMBO J. 11:2855–2862.
  • Wei, W., V. Jung, M. Wigler, and D. Broek. Unpublished data.
  • Wei, W., R. D. Mosteller, P. Sanyal, E. Gonzales, D. McKinney, C. Dasgupta, P. Li, B.-X. Liu, and D. Broek. 1992. Identification of a mammalian gene structurally and functionally related to the CDC25 gene of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 89:7100–7104.
  • Young, D., M. Riggs, J. Field, A. Vojtek, D. Broek, and M. Wigler. 1989. The adenylyl cyclase gene from Schizosaccharomyces pombe. Proc. Natl. Acad. Sci. USA 86:7989–7993.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.