2
Views
12
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Physical and Functional Interaction between Wild-Type p53 and mdm2 Proteins

, , &
Pages 1171-1178 | Received 13 Jul 1993, Accepted 03 Nov 1993, Published online: 30 Mar 2023

REFERENCES

  • Baker, S. J., S. Markowitz, E. R. Fearon, J. K. V. Wilson, and B. Vogelstein. 1990. Suppression of human colorectal carcinoma cell growth by wild-type p53. Science 249:912–915.
  • Barak, Y., and M. Oren. 1992. Enhanced binding of a 95 Kd protein to p53 in cells undergoing p53-mediated growth arrest. EMBO J. 11:2115–2121.
  • Cahilly-Snyder, L., T. Yang-Feng, U. Francke, and D. L. George. 1987. Molecular analysis and chromosomal mapping of amplified genes isolated from a transformed mouse 3T3 cell line. Somatic Cell Mol. Genet. 13:235–244.
  • Chen, J., V. Marechal, and A. J. Levine. 1993. Mapping of the p53 and mdm2 interaction domains. Mol. Cell. Biol. 13:4107–4114.
  • Chin, K. V., K. Ueda, I. Pastan, and M. M. Gottesman. 1992. Modulation of activity of the promoter of the human MDR1 gene by Ras and p53. Science 255:459–462.
  • Clarke, A. R., C. A. Purdie, D. J. Harrison, R. G. Morris, C. C. Bird, M. L. Hooper, and A. H. Wyllie. 1993. Thymocyte apoptosis induced by p53-dependent and independent pathways. Nature (London) 362:849–852.
  • Dewit, J. R., K. V. Wood, M. Deluca, D. R. Helinski, and S. Subramani. 1987. Firefly luciferase gene: structure and expression in mammalian cells. Mol. Cell. Biol. 7:725–737.
  • Diller, L., J. Kassel, C. E. Nelson, M. A. Gryka, G. Litwak, M. Gebhardt, B. Bressac, M. Ozturk, S. J. Baker, B. Vogelstein, and S. H. Friend. 1990. p53 functions as a cell cycle control protein in osteosarcomas. Mol. Cell. Biol. 10:5772–5781.
  • El-Deiry, W. S., S. E. Kern, J. A. Pietenpol, and K. W. Kinzler. 1992. Definition of a consensus binding site for p53. Nature Genet. 1:45–49.
  • Eliyah, D., D. Michalovitz, S. Eliyahu, O. Pinhasi-Kima, and M. Oren. 1989. Wild-type p53 can inhibit oncogene-mediated focus formation. Proc. Natl. Acad. Sci. USA 86:8763–8767.
  • Farkharzadeh, S. S., S. P. Trusko, and D. L. George. 1991. Tumorigenic potential associated with enhanced expression of a gene that is amplified in mouse tumor cell line. EMBO J. 10:1565–1569.
  • Farmer, G. E., J. Bargonetti, H. Zhu, P. Friedman, R. Prywes, and C. Prives. 1992. Wild-type p53 activates transcription in vitro. Nature (London) 358:83–86.
  • Finlay, C. A. 1993. The mdm-2 oncogene can overcome wild-type p53 suppression of transformed cell growth. Mol. Cell. Biol. 13:301–306.
  • Finlay, C. A., P. W. Hinds, and A. J. Levine. 1989. The p53 proto-oncogene can act as a suppressor of transformation. Cell 57:1083–1093.
  • Funk, W. D., D. T. Pak, R. H. Karas, W. E. Wright, and J. W. Shay. 1992. Transcriptionally active DNA-binding site for human p53 protein complexes. Mol. Cell. Biol. 12:2866–2871.
  • George, D. L., and V. Powers. 1982. Amplified DNA sequences associated with double minutes of a 3T3 mouse cell line, p. 199–204. In R. Schimke (ed.), Gene amplification. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Gorman, C. M., L. F. Moffat, and B. H. Howard. 1982. Recombinant genomes which express chloramphenicol acetyl-transferase in mammalian cells. Mol. Cell. Biol. 2:1044–1051.
  • Graham, F., and A. J. van der Eb. 1973. A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology 52:456–467.
  • Haines, D. S., and D. L. George. Unpublished data.
  • Hinds, P. W., C. A. Finlay, R. S. Quortin, S. J. Baker, E. R. Fearon, B. Vogelstein, and A. J. Levine. 1990. Mutant p53 cDNAs from human colorectal carcinomas can cooperate with ras in transformation of primary rat cells: a comparison of the “hot spot” mutant phenotypes. Cell Growth Differ. 1:571–580.
  • Hollstein, M., D. Sidransky, B. Vogelstein, and C. C. Harris. 1991. p53 mutations in human cancers. Science 253:49–53.
  • Kern, S., K. Kinzler, A. Bruskin, D. Jarosz, P. Friedman, C. Prives, and B. Vogelstein. 1991. Identification of p53 as a sequence-specific DNA binding protein. Science 252:1708–1711.
  • Kern, S. E., J. A. Pietenpol, S. Thiagalingam, A. Seymour, K. W. Kinzler, and B. Vogelstein. 1992. Oncogenic forms of p53 inhibit p53-regulated gene expression. Science 256:827–830.
  • Landanyi, M., C. Cha, R. Lewis, S. C. Jhanwar, A. G. Huvos, and J. H. Healy. 1993. MDM2 gene amplification in metastatic osteosarcoma. Cancer Res. 53:16–18.
  • Levine, A. J., J. Momand, and C. A. Finlay. 1991. The p53 tumour suppressor gene. Nature (London) 351:453–455.
  • Livingston, L. R., A. White, J. Sprouse, E. Livanos, T. Jacks, and T. D. Tlsty. 1993. Altered cell cycle arrest and gene amplification potential accompany loss of wild-type p53. Cell 70:923–935.
  • Lowe, S. W., Η. E. Ruley, T. Jacks, and D. E. Housman. 1993. p53 dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell 74:957–967.
  • Lowe, S. W., E. M. Schmitt, S. W. Smith, B. A. Osborne, and T. Jacks. 1993. p53 is required for radiation-induced apoptosis in mouse thymocytes. Nature (London) 362:847–849.
  • Martinez, J., I. Georgoff, J. Martinez, and A. J. Levine. 1991. Cellular localization and cell cycle regulation by a temperature-sensitive p53 protein. Genes Dev. 5:151–159.
  • Mercer, W. E., M. T. Shields, M. Amin, G. J. Sauve, E. Appella, J. W. Romano, and S. J. Ullrich. 1990. Negative growth regulation in a glioblastoma tumor cell line that conditionally expresses human wild-type p53. Proc. Natl. Acad. Sci. USA 87:6166–6170.
  • Momand, J., G. P. Zambetti, D. Olson, D. L. George, and A. J. Levine. 1992. The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell 69:1237–1245.
  • Oliner, J. D., K. W. Kinzler, P. S. Meltzer, D. L. George, and B. Vogelstein. 1992. Amplification of a gene ending a p53 associated protein in human sarcomas. Nature (London) 358:80–83.
  • Oliner, J. D., J. A. Pietenpol, S. Thiagalingam, J. Gyuris, K. W. Kinzler, and B. Vogelstein. 1993. Oncoprotein MDM2 conceals the activation domain of tumour suppressor p53. Nature (London) 362:857–860.
  • Olson, D. C., V. Marechal, J. Momand, J. Chen, C. Romocki, and A. J. Levine. 1993. Identification and characterization of multiple mdm-2 proteins and mdm-2-p53 protein complexes. Oncogene 8:2353–2360.
  • Otto, A., and W. Deppert. 1993. Upregulation of mdm-2 expression in meth a tumor cells tolerating wild-type p53. Oncogene 8:2591–2603.
  • Seto, E., A. Usheva, G. P. Zambetti, J. Momand, N. Horokoshi, R. Weinmann, A. J. Levine, and T. Shenk. 1992. Wild-type p53 binds to the TATA-binding protein and represses transcription. Proc. Natl. Acad. Sci. USA 89:12028–12032.
  • Shaulsky, G., N. Goldfinger, A. Peled, and V. Rotter. 1991. Involvement of wild-type p53 in pre-B cell differentiation in vitro. Proc. Natl. Acad. Sci. USA 88:8982–8986.
  • Shaw, P., R. Bovey, S. Tardy, R. Sahli, B. Sordat, and J. Costa. 1992. Induction of apoptosis by wild-type p53 in a human colon tumor-derived cell line. Proc. Natl. Acad. Sci. USA 89:4495–4499.
  • Subler, M. A., D. W. Martin, and S. Deb. 1992. Inhibition of viral and cellular promoters by human wild-type p53. J. Virol. 66:4757–4762.
  • Tan, T. H., J. Wallis, and A. J. Levine. 1986. Identification of the p53 protein domain involved in formation of the simian virus 40 large T-antigen-p53 protein complex. J. Virol. 59:574–583.
  • Vogelstein, B., and K. W. Kinzler. 1992. p53 function and dysfunction. Cell 70:523–526.
  • Wu, X., J. H. Bayle, D. Olson, and A. J. Levine. 1993. The p53-mdm-2 autoregulatory feedback loop. Genes Dev. 7:1126–1132.
  • Yin, Y., M. A. Tainsky, F. Z. Bischoff, L. C. Strong, and G. M. Wahl. 1993. Wild-type p53 restores cell cycle control and inhibits gene amplification in cells with mutant p53 alleles. Cell 70:937–948.
  • Yonish-Rouach, E., D. Resnitzky, J. Lotem, L. Sachs, A. Kimchi, and M. Oren. 1991. Wild-type p53 induces apoptosis of myeloid leukaemic cells that is inhibited by interleukin-6. Nature (London) 352:345–347.
  • Zambetti, G. P., J. Bargonetti, K. Walker, C. Prives, and A. J. Levine. 1992. Wild-type p53 mediates positive regulation of gene expression through a specific DNA sequence element. Genes Dev. 6:1143–1152.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.