0
Views
21
CrossRef citations to date
0
Altmetric
Gene Expression

The bZIP Transactivator of Epstein-Barr Virus, BZLF1, Functionally and Physically Interacts with the p65 Subunit of NF-kB

, , , , , & show all
Pages 1939-1948 | Received 20 May 1993, Accepted 13 Dec 1993, Published online: 30 Mar 2023

REFERENCES

  • Artandi, S., and K. Calame. 1993. Glutathione S-transferase fusion protein affinity chromatography to assess biochemical interactions between DNA-binding proteins, p. 267–279. In K. W. Adolph (ed.), Methods in molecular genetics. Academic Press, Inc., San Diego, Calif.
  • Baeuerle, P. A. 1991. The inducible transcription activator NF- kappa B: regulation by distinct protein subunits. Biochim. Biophys. Acta 1072:63–80.
  • Baeuerle, P. A., and D. Baltimore. 1988. IκB: a specific inhibitor of the NF-κB transcription factor. Science 242:540–546.
  • Baeuerle, P. A., and D. Baltimore. 1989. A 65-kD subunit of active NF-kB is required for inhibition of NF-κB by IκB. Genes Dev. 3:1689–1698.
  • Baldwin, A. S., and P. A. Sharp. 1988. Two transcription factors, NF-κB and H2TF1, interact with a single regulatory sequence in the class I major histocompatibility complex promoter. Proc. Natl. Acad. Sci. USA 85:723–727.
  • Beg, A. A., S. M. Ruben, R. I. Scheinman, S. Haskill, C. A. Rosen, and A. S. Baldwin. 1992. IκB interacts with the nuclear localization sequences of the subunits of NF-κB: a mechanism for cytoplasmic retention. Genes Dev. 6:1899–1913.
  • Bengal, E., L. Ransone, R. Scharfmann, V. J. Dwarki, S. J. Tapscott, H. Weintraub, and I. M. Verma. 1992. Functional antagonism between c-jun and MyoD proteins: a direct physical association. Cell 68:507–519.
  • Blanar, M. A., and W. J. Rutter. 1992. Interaction cloning: identification of a helix-loop-helix zipper protein that interacts with c-fos. Science 256:1014–1018.
  • Buisson, M., E. Manet, M. Trescol-Biemont, H. Gruffat, B. Durand, and A. Sergeant. 1989. The Epstein-Barr virus (EBV) early protein EB2 is a posttranscriptional activator expressed under the control of EBV transcription factors EB1 and R. J. Virol. 63:5276–5284.
  • Chang, Y. N., D. L. Dong, G. S. Hayward, and S. D. Hayward. 1990. The Epstein-Barr virus Zta transactivator: a member of the bZIP family with unique DNA-binding specificity and a dimerization domain that lacks the characteristic heptad leucine zipper motif. J. Virol. 64:3358–3369.
  • Chavrier, P., H. Gruffat, A. Chevallier-Greco, M. Buisson, and A. Sergeant. 1989. The Epstein-Barr virus (EBV) early promoter DR contains a czs-acting element responsive to the EBV transactivator EB1 and an enhancer with constitutive and inducible activities. J. Virol. 63:607–614.
  • Cherrington, J. M., and E. S. Mocarski. 1989. Human cytomegalovirus ie 1 transactivates the a promoter-enhancer via an 18-base- pair repeat element. J. Virol. 63:1435–1440.
  • Chevallier-Greco, A., H. Gruffat, E. Manet, A. Calender, and A. Sergeant. 1989. The Epstein-Barr virus (EBV) DR enhancer contains two functionally different domains: domain A is constitutive and cell specific, domain B is transactivated by the EBV early protein R. J. Virol. 63:615–623.
  • Chevallier-Greco, A., E. Manet, P. Chavrier, C. Mosnier, J. Daillie, and A. Sergeant. 1986. Both Epstein-Barr virus (EBV)- encoded trans-acting factors, EB1 and EB2, are required to activate transcription from an EBV early promoter. EMBO J. 5:3243–3249.
  • Countryman, J., and G. Miller. 1985. Activation of expression of latent Epstein-Barr herpesvirus after gene transfer with a small cloned subfragment of heterogeneous viral DNA. Proc. Natl. Acad. Sci. USA 82:4085–4089.
  • Cox, M. A., J. Leahy, and J. M. Hardwick. 1990. An enhancer within the divergent promoter of Epstein-Barr virus responds synergistically to the R and Z transactivators. J. Virol. 64:313–321.
  • Daibata, M., R. E. Humphreys, and T. Sairenji. 1992. Phosphorylation of the Epstein-Barr virus BZLF1 immediate-early gene product ZEBRA. Virology 188:916–920.
  • Farrell, P. J., D. T. Rowe, C. M. Rooney, and T. Kouzarides. 1989. Epstein-Barr virus BZLF1 trans-activator specifically binds to a consensus AP-1 site and is related to c-fos. EMBO J. 8:127–132.
  • Flemington, E., and S. H. Speck. 1990. Autoregulation of Epstein-Barr virus putative lytic switch gene BZLF1. J. Virol. 64:1227–1232.
  • Flemington, E., and S. H. Speck. 1990. Evidence for coiled-coil dimer formation by an Epstein-Barr virus transactivator that lacks a heptad repeat of leucine residues. Proc. Natl. Acad. Sci. USA 87:9459–9463.
  • Ghosh, S., A. M. Gifford, L. R. Riviere, P. Tempst, G. P. Nolan, and D. Baltimore. 1990. Cloning of the p50 DNA binding subunit of NF-κB: homology to rel and dorsal. Cell 62:1019–1029.
  • Giot, J. F., I. Mikaelian, M. Buisson, E. Manet, I. Joab, J. C. Nicolas, and A. Sergeant. 1991. Transcriptional interference between the EBV transcription factors EB1 and R: both DNA- binding and activation domains of EB1 are required. Nucleic Acids Res. 19:1251–1258.
  • Goldfeld, A. E., J. L. Strominger, and C. Doyle. 1991. Human tumor necrosis factor a gene regulation in phorbol ester stimulated T and B cell lines. J. Exp. Med. 174:73–81.
  • Gorman, C. M., L. F. Moffat, and B. H. Howard. 1982. Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells. Mol. Cell. Biol. 2:1044–1051.
  • Hammarskjold, M. L., and M. C. Simurda. 1992. Epstein-Barr virus latent membrane protein transactivates the human immunodeficiency virus type 1 long terminal repeat through induction of NF-κB activity. J. Virol. 66:6496–6501.
  • Hardwick, J. M., P. M. Lieberman, and S. D. Hayward. 1988. A new Epstein-Barr virus transactivator, R, induces expression of a cytoplasmic early antigen. J. Virol. 62:2274–2284.
  • Haskill, S., A. A. Beg, S. M. Tompkins, J. S. Morris, A. D. Yurochko, J. A. Sampson, K. Mondai, P. Ralph, and A. S. Baldwin. 1991. Characterization of an immediate-early gene induced in adherent monocytes that encodes IκB-like activity. Cell 65:1281–1289.
  • Hirai, H., J. Fujisawa, T. Suzuki, K. Ueda, M. Muramatsu, A. Tsuboi, N. Arai, and M. Yoshida. 1992. Transcriptional activator Tax of HTLV-1 binds to the NF-κB precursor pl05. Oncogene 7:1737–1742.
  • Holley-Guthrie, E. A., E. B. Quinlivan, E. C. Mar, and S. Kenney. 1990. The Epstein-Barr virus (EBV) BMRF1 promoter for early antigen (EA-D) is regulated by the EBV transactivators, BRLF1 and BZLF1, in a cell-specific manner. J. Virol. 64:3753–3759.
  • Kenney, S. Unpublished data.
  • Kenney, S., E. Holley-Guthrie, E. C. Mar, and M. Smith. 1989. The Epstein-Barr virus BMLF1 promoter contains an enhancer element that is responsive to the BZLF1 and BRLF1 transactivators. J. Virol. 63:3878–3883.
  • Kenney, S., J. Kamine, E. Holley-Guthrie, E. C. Mar, J. C. Lin, D. Markovitz, and J. Pagano. 1989. The Epstein-Barr virus immediate-early gene product, BMLF1, acts in trans by a posttranscriptional mechanism which is reporter gene dependent. J. Virol. 63:3870–3877.
  • Kenney, S. C., E. Holley-Guthrie, E. B. Quinlivan, D. Gutsch, Q. Zhang, T. Bender, J. F. Giot, and A. Sergeant. 1992. The cellular oncogene c-myb can interact synergistically with the Epstein-Barr virus BZLF1 transactivator in lymphoid cells. Mol. Cell. Biol. 12:136–146.
  • Kieff, E., and D. Leibowitz. 1990. Epstein-Barr virus and its replication, p. 1889–1920. In B. N. Fields, D. M. Knipe, R. M. Chanock, M. S. Hirsch, J. L. Melnick, T. P. Monath, and B. Roizman (ed.), Virology. Raven Press, New York.
  • Kieran, M., V. Blank, F. Logeat, J. Vandekerckhove, F. Lottspeich, B. O. Le, M. B. Urban, P. Kourilsky, P. A. Baeuerle, and A. Israel. 1990. The DNA binding subunit of NF-κB is identical to factor KBF1 and homologous to the rel oncogene product. Cell 62:1007–1018.
  • Kouzarides, T., G. Packham, A. Cook, and P. J. Farrell. 1991. The BZLF1 protein of EBV has a coiled coil dimerisation domain without a heptad leucine repeat but with homology to the C/EBP leucine zipper. Oncogene 6:195–204.
  • Laherty, C. D., H. M. Hu, A. W. Opipari, F. Wang, and V. M. Dixit. 1992. The Epstein-Barr virus LMP1 gene product induces A20 zinc finger protein expression by activating nuclear factor κB. J. Biol. Chem. 267:24157–24160.
  • Lai, J. S., and W. Herr. 1992. Ethidium bromide provides a simple tool for identifying genuine DNA-independent protein associations. Proc. Natl. Acad. Sci. USA 89:6958–6962.
  • LeClair, K. P., M. A. Blanar, and P. A. Sharp. 1992. The p50 subunit of NF-κB associates with the NF-IL6 transcription factor. Proc. Natl. Acad. Sci. USA 89:8145–8149.
  • Lenardo, M. J., and D. Baltimore. 1989. NF-κB: a pleiotropic mediator of inducible and tissue-specific gene control. Cell 58:227–229.
  • Li, J. S., B. S. Zhou, G. E. Dutschman, S. P. Grill, R. S. Tan, and Y. C. Cheng. 1987. Association of Epstein-Barr virus early antigen diffuse component and virus-specified DNA polymerase activity. J. Virol. 61:2947–2949.
  • Lieberman, P. M., and A. J. Berk. 1991. The Zta trans-activator protein stabilizes TFIID association with promoter DNA by direct protein-protein interaction. Genes Dev. 5:2441–2454.
  • Lieberman, P. M., J. M. Hardwick, and S. D. Hayward. 1989. Responsiveness of the Epstein-Barr virus NotI repeat promoter to the Z transactivator is mediated in a cell-type-specific manner by two independent signal regions. J. Virol. 63:3040–3050.
  • Manet, E., H. Gruffat, M. C. Trescol-Biemont, N. Moreno, P. Chambard, J. F. Giot, and A. Sergeant. 1989. Epstein-Barr virus bicistronic mRNAs generated by facultative splicing code for two transcriptional trans-activators. EMBO J. 8:1819–1826.
  • Marschall, M., U. Leser, R. Seibl, and H. Wolf. 1989. Identification of proteins encoded by Epstein-Barr virus trans-activator genes. J. Virol. 63:938–942.
  • Miller, G. 1990. Epstein-Barr virus: biology, pathogenesis, and medical aspects, p. 1921–1958. In B. N. Fields, D. M. Knipe, R. M. Chanock, M. S. Hirsch, J. L. Melnick, T. P. Monath, and B. Roizman (ed.), Virology. Raven Press, New York.
  • Muesing, M. A., D. H. Smith, and D. J. Capon. 1987. Regulation of mRNA accumulation by a human immunodeficiency virus trans-activator protein. Cell 48:691–701.
  • Nabel, G., and D. Baltimore. 1987. An inducible transcription factor activates expression of human immunodeficiency virus in T cells. Nature (London) 326:711–713.
  • Narayanan, R., J. F. Klement, S. M. Ruben, K. A. Higgins, and C. A. Rosen. 1992. Identification of a naturally occurring transforming variant of the p65 subunit of NF-κB. Science 256:367–370.
  • Nelsen, B., L. Hellman, and R. Sen. 1988. The NF-κB-binding site mediates phorbol ester-inducible transcription in nonlymphoid cells. Mol. Cell. Biol. 8:3526–3531.
  • Neri, A., C. C. Chang, L. Lombardi, M. Salina, P. Corradini, A. T. Maiolo, R. S. Chaganti, and R. Dalla-Favera. 1991. B cell lymphoma-associated chromosomal translocation involves candidate oncogene lyt-10, homologous to NF-κB p50. Cell 67:1075–1087.
  • Nolan, G. P., and D. Baltimore. 1992. The inhibitory ankyrin and activator Rel proteins. Curr. Opin. Genet. Dev. 2:211–220.
  • Nolan, G. P., S. Ghosh, H. C. Liou, P. Tempst, and D. Baltimore. 1991. DNA binding and IκB inhibition of the cloned p65 subunit of NF-κB, a rel-related polypeptide. Cell 64:961–969.
  • Quinlivan, E. B., E. A. Holley-Guthrie, M. Norris, D. Gutsch, S. L. Bachenheimer, and S. C. Kenney. 1993. Direct BRLF1 binding is required for cooperative BZLF1/BRLF1 activation of the Epstein-Barr virus early promoter, BMRF1. Nucleic Acids Res. 21:1999–2007.
  • Riviere, Y., V. Blank, P. Kourilsky, and A. Israel. 1991. Processing of the precursor of NF-κB by the HIV-1 protease during acute infection. Nature (London) 350:625–626.
  • Rong, B. L., T. A. Libermann, K. Kogawa, S. Ghosh, L. X. Cao, L. D. Pavan, and E. C. Dunkel. 1992. HSV-1-inducible proteins bind to NF-κB-like sites in the HSV-1 genome. Virology 189:750–756.
  • Rooney, C. M., D. T. Rowe, T. Ragot, and P. J. Farrell. 1989. The spliced BZLF1 gene of Epstein-Barr virus (EBV) transactivates an early EBV promoter and induces the virus productive cycle. J. Virol. 63:3109–3116.
  • Ruben, S. M., P. J. Dillon, R. Schreck, T. Henkel, C. H. Chen, M. Maher, P. A. Baeuerle, and C. A. Rosen. 1991. Isolation of a rel-related human cDNA that potentially encodes the 65-kD subunit of NF-κB. Science 251:1490–1493.
  • Ruben, S. M., R. Narayanan, J. F. Klement, C. H. Chen, and C. A. Rosen. 1992. Functional characterization of the NF-κB p65 transcriptional activator and an alternatively spliced derivative. Mol. Cell. Biol. 12:444–454.
  • Ryseck, R. P., P. Bull, M. Takamiya, V. Bours, U. Siebenlist, P. Dobrzanski, and R. Bravo. 1992. RelB, a new Rel family transcription activator that can interact with p50-NF-κB. Mol. Cell. Biol. 12:674–684.
  • Sassone-Corsi, P., A. Wildeman, and P. Chambon. 1985. A trans-acting factor is responsible for the simian virus 40 enhancer activity in vitro. Nature (London) 313:458–463.
  • Schule, R., and R. M. Evans. 1991. Cross-coupling of signal transduction pathways: zinc finger meets leucine zipper. Trends Genet. 7:377–381.
  • Sen, R., and D. Baltimore. 1986. Inducibility of κ immunoglobulin enhancer-binding protein NF-κB by a posttranslational mechanism. Cell 47:921–928.
  • Sen, R., and D. Baltimore. 1986. Multiple nuclear factors interact with the immunoglobulin enhancer sequences. Cell 46:705–716.
  • Shimizu, N., S. Sakuma, Y. Ono, and K. Takada. 1989. Identification of an enhancer-type sequence that is responsive to Z and R trans-activators of Epstein-Barr virus. Virology 172:655–658.
  • Sista, N. D., J. S. Pagano, W. Liao, and S. Kenney. 1993. Retinoic acid is a negative regulator of the Epstein-Barr virus protein (BZLF1) that mediates disruption of latent infection. Proc. Natl. Acad. Sci. USA 90:3894–3898.
  • Sixbey, J. W., J. C. Nedrud, N. Raab-Traub, R. A. Hanes, and J. S. Pagano. 1984. Epstein-Barr virus replication in oropharyngeal epithelial cells. N. Engl. J. Med. 310:1225–1230.
  • Stein, B., P. C. Cogswell, and A. S. Baldwin. 1993. Functional and physical associations between NF-κB and C/EBP family members: a Rel domain-bZIP interaction. Mol. Cell. Biol. 13:3964–3974.
  • Stein, B., H. J. Rahmsdorf, A. Steffen, M. Litfin, and P. Herrlich. 1989. UV-induced DNA damage is an intermediate step in UV-induced expression of human immunodeficiency virus type 1, collagenase, c-fos, and metallothionein. Mol. Cell. Biol. 9:5169–5181.
  • Steward, R. 1987. Dorsal, an embryonic polarity gene in Drosophila is homologous to the vertebrate proto-oncogene, c-rel. Science 238:692–694.
  • Takada, K., N. Shimizu, S. Sakuma, and Y. Ono. 1986. trans activation of the latent Epstein-Barr virus (EBV) genome after transfection of the EBV DNA fragment. J. Virol. 57:1016–1022.
  • Urier, G., M. Buisson, P. Chambard, and A. Sergeant. 1989. The Epstein-Barr virus early protein EB1 activates transcription from different responsive elements including AP-1 binding sites. EMBO J. 8:1447–1453.
  • Walker, W. H., B. Stein, P. A. Ganchi, J. A. Hoffman, P. A. Kaufman, D. W. Ballard, M. Hannink, and W. C. Greene. 1992. The v-rel oncogene: insights into the mechanism of transcriptional activation, repression, and transformation. J. Virol. 66:5018–5029.
  • Wilhelmsen, K. C., K. Eggleton, and H. M. Temin. 1984. Nucleic acid sequences of the oncogene v-rel in reticuloendotheliosis virus strain T and its cellular homolog, the proto-oncogene c-rel. J. Virol. 52:172–182.
  • Young, L. S., R. Lau, M. Rowe, G. Niedobitek, G. Packham, F. Shanahan, D. T. Rowe, D. Greenspan, J. S. Greenspan, A. B. Rickinson, and P. J. Farrell. 1991. Differentiation-associated expression of the Epstein-Barr virus BZLF1 transactivator protein in oral hairy leukoplakia. J. Virol. 65:2868–2874.
  • Zalani, S., E. A. Holley-Guthrie, D. E. Gutsch, and S. C. Kenney. 1992. The Epstein-Barr virus immediate-early promoter BRLF1 can be activated by the cellular Spl transcription factor. J. Virol. 66:7282–7289.
  • Zhang, Q., D. Gutsch, and S. Kenney. 1994. Functional and physical interaction between p53 and BZLF1: implications for Epstein-Barr virus latency. Mol. Cell. Biol. 14:1929–1938.
  • zur Hausen, H., F. J. O'Neill, and K. F. Ulrich. 1978. Persisting oncogenic herpesvirus induced by the tumour promoter TPA. Nature (London) 272:373–375.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.