11
Views
9
CrossRef citations to date
0
Altmetric
Cell and Organelle Structure and Assembly

Subcellular Locations of MOD5 Proteins: Mapping of Sequences Sufficient for Targeting to Mitochondria and Demonstration that Mitochondrial and Nuclear Isoforms Commingle in the Cytosol

, , , , &
Pages 2298-2306 | Received 14 Sep 1993, Accepted 04 Jan 1994, Published online: 30 Mar 2023

REFERENCES

  • Aris, J. P., and G. Blobel. 1988. Identification and characterization of a yeast nucleolar protein that is similar to a rat liver nucleolar protein. J. Cell Biol. 107:17–31.
  • Beggs, J. D. 1981. Multiplicopy yeast plasmid vectors, p. 383–390. In D. Von Wettstein, J. Friis, M. Kielland-Brandt, and A. Stenderup (ed.), Molecular genetics in yeast, vol. 16. Alfred Benzon Symposium. Munksgaard, Copenhagen.
  • Beltzer, J. P., S. R. Morris, and G. B. Kohlhaw. 1988. Yeast LEU4 encodes mitochondrial and nonmitochondrial forms of a-isopro-pylmalate synthase. J. Biol. Chem. 263:368–374.
  • Chatton, B., P. Walter, J.-P. Ebel, F. Lacroute, and F. Fasiolo. 1988. The yeast VAS1 gene encodes both mitochondrial and cytoplasmic valyl-tRNA synthetases. J. Biol. Chem. 263:52–57.
  • Chen, J. Y., P. B. Joyce, C. L. Wolfe, M. C. Steffen, and N. C. Martin. 1992. Cytoplasmic and mitochondrial tRNA nucleotidyltransferase activities are derived from the same gene in the yeast Saccharomyces cerevisiae. J. Biol. Chem. 267:14879–14883.
  • Chiu, M. I., T. L. Mason, and G. R. Fink. 1992. HTS1 encodes both the cytoplasmic and mitochondrial histidyl-tRNA synthetase of Saccharomyces cerevisiae: mutations alter the specificity of com-partmentation. Genetics 132:987–1001.
  • Daum, G., P. C. Bohni, and G. Schatz. 1982. Import of proteins into mitochondria: cytochrome b2 and cytochrome c peroxidase are located in the intermembrane space of yeast mitochondria. J. Biol. Chem. 257:13028–13033.
  • Dihanich, M. E., D. Najarian, R. Clark, E. C. Gillman, N. C. Martin, and A. K. Hopper. 1987. Isolation and characterization of MOD5, a gene required for isopentenylation of cytoplasmic and mitochondrial tRNAs of Saccharomyces cerevisiae. Mol. Cell. Biol. 7:177–184.
  • Dingwall, C., and R. A. Laskey. 1991. Nuclear targeting sequences—a consensus? Trends Biochem. Sci. 16:478–481.
  • Dowhan, W., C. R. Bibus, and G. Schatz. 1985. The cytoplasmi-cally-made subunit IV is necessary for assembly of cytochrome c oxidase in yeast. EMBO J. 4:179–184.
  • Eisenberg, D., R. M. Weiss, and T. C. Terwillizer. 1982. The helical hydrophobic moment: a measure of the amphiphilicity of a helix. Nature (London) 229:371–374.
  • Ellis, S. R., A. K. Hopper, and N. C. Martin. 1987. Amino-terminal extension generated from an upstream AUG codon is not required for mitochondrial import of yeast N2,N2-dimethylguanosine-specific tRNA methyltransferase. Proc. Natl. Acad. Sci. USA 84:5172–5176.
  • Ellis, S. R., A. K. Hopper, and N. C. Martin. 1989. Amino-terminal extension generated from an upstream AUG codon increases the efficiency of mitochondrial import of yeast N2,N2-dimethyl-guanosine-specific tRNA methyltransferases. Mol. Cell. Biol. 9:1611–1620.
  • Ellis, S. R., M. J. Morales, J. M. Li, A. K. Hopper, and N. C. Martin. 1986. Isolation and characterization of the TRM1 locus, a gene essential for the N2,N2-dimethylguanosine modification of both mitochondrial and cytoplasmic tRNA in Saccharomyces cerevisiae. J. Biol. Chem. 261:9703–9709.
  • Fujiki, M., and K. Verner. 1991. Coupling of protein synthesis and mitochondrial import in a homologous yeast in vitro system. J. Biol. Chem. 266:6841–6847.
  • Fujiki, M., and K. Verner. 1993. Coupling of cytosolic protein synthesis and mitochondrial protein import in yeast. Evidence for cotranslational import in vivo. J. Biol. Chem. 268:1914–1920.
  • Gasser, S. M., G. Daum, and G. Schatz. 1982. Import of proteins into mitochondria: energy-dependent uptake of precursors by isolated mitochondria. J. Biol. Chem. 257:13034–13041.
  • Gillman, E. C., L. B. Slusher, N. C. Martin, and A. K. Hopper. 1991. MOD5 translation initiation sites determine N6-isopenteny-lation modification of mitochondrial and cytoplasmic tRNA. Mol. Cell. Biol. 11:2382–2390.
  • Grosjean, H. Personal communication.
  • Hopper, A. K., F. Banks, and V. Evangelidis. 1978. A yeast mutant which accumulates precursor tRNAs. Cell 14:211–219.
  • Hopper, A. K., H. M. Traglia, and R. W. Dunst. 1990. The yeast RNA1 gene product necessary for RNA processing is located in the cytosol and apparently excluded from the nucleus. J. Cell Biol. 111:309–321.
  • Hurt, D. J., S. S. Wang, Y.-H. Lin, and A. K. Hopper. 1987. Cloning and characterization of LOS1, a Saccharomyces cerevisiae gene that affects tRNA splicing. Mol. Cell. Biol. 7:1208–1216.
  • Hurt, E. C., U. Muller, and G. Schatz. 1985. The first twelve amino acids of a yeast mitochondrial outer membrane protein can direct a nuclear-coded cytochrome oxidase subunit to the mitochondrial inner membrane. EMBO J. 4:3509–3518.
  • Ito, H., Y. Fukuda, K. Murata, and A. Kimura. 1983. Transformation of intact yeast cells treated with alkali cations. J. Bacteriol. 153:163–168.
  • Jones, E. W. 1991. Tackling the protease problem in Saccharomyces. Methods Enzymol. 194:428–453.
  • Kilmartin, J. V., and A. E. Adams. 1984. Structural rearrangements of tubulin and actin during the cell cycle of the yeast Saccharomyces. J. Cell Biol. 98:922–933.
  • Knapp, G., R. C. Ogden, C. L. Peebles, and J. Abelson. 1979. Splicing of yeast tRNA precursors: structure of the reaction intermediates. Cell 18:37–45.
  • Krieg, P. A., and D. A. Melton. 1987. In vitro RNA synthesis with SP6 RNA polymerase. Methods Enzymol. 155:397–415.
  • Kunkel, T. A., J. D. Roberts, and R. A. Zakour. 1987. Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol. 154:367–382.
  • Lambowitz, A. M., and P. S. Perlman. 1990. Involvement of aminoacyl-tRNA synthetases and other proteins in group I and group II intron splicing. Trends Biochem. Sci. 15:440–444.
  • Li, J. M., A. K. Hopper, and N. C. Martin. 1989. N2,N2-dimethyl guanosine-specific tRNA methyltransferase contains both nuclear and mitochondrial targeting signals in Saccharomyces cerevisiae. J. Cell Biol. 109:1411–1419.
  • Maniatis, T., E. F. Fritsch, and J. Sambrook. 1982. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Martin, N. C., and A. K. Hopper. 1982. Isopentenylation of both cytoplasmic and mitochondrial tRNA is affected by a single nuclear mutation. J. Biol. Chem. 257:10562–10565.
  • Martin, N. C., and A. K. Hopper. Review in preparation.
  • Najarian, D., M. E. Dihanich, N. C. Martin, and A. K. Hopper. 1987. DNA sequence and transcript mapping of MOD5: features of the 5′ region which suggest two translational starts. Mol. Cell. Biol. 7:185–191.
  • Nishikura, K., and E. M. De Robertis. 1981. RNA processing in microinjected Xenopus oocytes: sequential addition of base modifications in the spliced transfer RNA. J. Mol. Biol. 145:405–420.
  • Peterson, G. L. 1977. A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal. Biochem. 83:346–356.
  • Pfanner, N., and W. Neupert. 1990. The mitochondrial protein import apparatus. Annu. Rev. Biochem. 59:331–353.
  • Pon, L., and G. Schatz. 1991. Biogenesis of yeast mitochondria, p. 333–406. In J. R. Broach, E. W. Jones, and J. R. Pringle (ed.), The molecular and cellular biology of the yeast Saccharomyces: genome dynamics, protein synthesis and energetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Pringle, J. R., A. E. Adams, D. G. Drubin, and B. K. Haarer. 1991. Immunofluorescence methods for yeast. Methods Enzymol. 194:565–602.
  • Robbins, J. S., M. Dilworth, R. A. Laskey, and C. Dingwall. 1991. Two independent basic domains in nucleoplasmin nuclear targeting sequence: identification of a class of bipartite nuclear targeting sequence. Cell 64:615–623.
  • Shen, W.-C., D. Selvakumar, D. R. Stanford, and A. K. Hopper. 1993. The Saccharomyces cerevisiae LOS1 gene involved in pre-tRNA splicing encodes a nuclear protein that behaves as a component of the nuclear matrix. J. Biol. Chem. 268:19436–19444.
  • Silver, P. A. 1991. How proteins enter the nucleus. Cell 64:489–497.
  • Slusher, L. B., E. C. Gillman, N. C. Martin, and A. K. Hopper. mRNA leader length and initiation codon context determine alternative AUG selection for the yeast gene MOD5. Proc. Natl. Acad. Sci. USA 88:9789–9793.
  • Stueber, D., I. Ibrahimi, D. Cutler, B. Dobberstein, and H. Bujard. 1984. A novel in vitro transcription-translation system: accurate and efficient synthesis of single proteins from cloned DNA sequences. EMBO J. 3:3143–3148.
  • van Loon, A. P., and G. Schatz. 1987. Transport of proteins to the mitochondrial intermembrane space: the ‘sorting’ domain of the cytochrome c1 presequence is a stop-transfer sequence specific for the mitochondrial inner membrane. EMBO J. 6:2441–2448.
  • Verner, K., and B. D. Lemire. 1989. Tight folding of a passenger protein can interfere with the targeting function of a mitochondrial presequence. EMBO J. 8:1491–1495.
  • Verner, K., and G. Schatz. 1988. Protein translocation across membranes. Science 241:1307–1313.
  • von Heijne, G. 1986. Mitochondrial targeting sequences may form amphiphilic helices. EMBO J. 5:1335–1342.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.