3
Views
7
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Direct Association of p110β Phosphatidylinositol 3-kinase with p85 Is Mediated by an N-Terminal Fragment of p110β

&
Pages 2577-2583 | Received 12 Nov 1993, Accepted 21 Jan 1994, Published online: 30 Mar 2023

REFERENCES

  • Anderson, D., C. A. Koch, L. Grey, C. Ellis, M. F. Moran, and T. Pawson. 1990. Binding of SH2 domains of phospholipase Cγ1, GAP, and Src to activated growth factor receptors. Science 250:979–982.
  • Auger, K. R., L. A. Serunian, S. P. Soltoff, P. Libby, and L. C. Cantley. 1989. PDGF-dependent tyrosine phosphorylation stimulates production of novel polyphosphoinositides in intact cells. Cell 57:167–175.
  • Carpenter, C. L., B. C. Duckworth, K. R. Auger, B. Cohen, B. S. Schaffhausen, and L. C. Cantley. 1990. Purification and characterization of phosphoinositide 3-kinase from rat liver. J. Biol. Chem. 265:19704–19711.
  • Carter, A. N., and C. P. Downes. 1992. Phosphatidylinositol 3-kinase is activated by nerve growth factor and epidermal growth factor in PC12 cells. J. Biol. Chem. 267:14563–14567.
  • Chen, C., and H. Okayama. 1987. High-efficiency transformation of mammalian cells by plasmid DNA. Mol. Cell. Biol. 7:2745–2752.
  • Corey, S., A. Eguinoa, K. Puyana-Theall, J. B. Bolen, L. Cantley, F. Mollinedo, T. R. Jackson, P. T. Hawkins, and L. R. Stephens. 1993. Granulocyte macrophage-colony stimulating factor stimulates both association and activation of phosphoinositide 30H-kinase and src-related tyrosine kinase(s) in human myeloid derived cells. EMBO J. 12:2681–2690.
  • Coughlin, S. R., J. A. Escobedo, and L. T. Williams. 1989. Role of phosphatidylinositol kinase in PDGF receptor signal transduction. Science 243:1191–1194.
  • Courtneidge, S. A., and A. Heber. 1987. An 81 kd protein complexed with middle T antigen and pp60c-src: a possible phosphatidylinositol kinase. Cell 50:1031–1037.
  • Escobedo, J. A., S. Navankasattusas, W. M. Kavanaugh, D. Milfay, V. A. Fried, and L. T. Williams. 1991. cDNA cloning of a novel 85 kd protein that has SH2 domains and regulates binding of PI3-kinase to the PDGF β-receptor. Cell 65:75–82.
  • Fantl, W. J., J. A. Escobedo, G. A. Martin, C. W. Turck, M. del Rosario, F. McCormick, and L. T. Williams. 1992. Distinct phosphotyrosines on a growth factor receptor bind to specific molecules that mediate different signaling pathways. Cell 69:413–423.
  • Field, J., J.-I. Nikawa, D. Broek, B. MacDonald, L. Rodgers, I. A. Wilson, R. A. Lerner, and M. Wigler. 1988. Purification of a RAS-responsive adenylyl cyclase complex from Saccharomyces cerevisiae by use of an epitope addition method. Mol. Cell. Biol. 8:2159–2165.
  • Fukui, Y., and H. Hanafusa. 1989. Phosphatidylinositol kinase activity associates with viral p60src protein. Mol. Cell. Biol. 9:1651–1658.
  • Fukui, Y., S. Kornbluth, S. Jong, L. Wang, and H. Hanafusa. 1989. Phosphatidylinositol kinase type I activity associates with various oncogene products. Oncogene Res. 4:283–292.
  • Fukui, Y., A. R. Saltiel, and H. Hanafusa. 1991. Phosphatidylinosi-tol-3 kinase is activated in v-src, v-yes, and v-fps transformed chicken embryo fibroblasts. Oncogene 6:407–411.
  • Graziani, A., D. Gramaglia, L. C. Cantley, and P. M. Comoglio. 1991. The tyrosine-phosphorylated hepatocyte growth factor/scatter factor receptor associates with phosphatidylinositol 3-kinase. J. Biol. Chem. 266:22087–22090.
  • Hiles, I. D., M. Otsu, S. Volinia, M. J. Fry, I. Gout, R. Dhand, G. Panayotou, F. Ruiz-Larrea, A. Thompson, N. F. Totty, J. J. Hsuan, S. A. Courtneidge, P. J. Parker, and M. D. Waterfield. 1992. Phosphatidylinositol 3-kinase: structure and expression of the 110kd catalytic subunit. Cell 70:419–429.
  • Hu, P., B. Margolis, E. Y. Skolnik, R. Lammers, A. Ullrich, and J. Schlessinger. 1992. Interaction of phosphatidylinositol 3-kinase-associated p85 with epidermal growth factor and platelet-derived growth factor receptors. Mol. Cell. Biol. 12:981–990.
  • Hu, P., A. Mondino, E. Y. Skolnik, and J. Schlessinger. 1993. Cloning of a novel, ubiquitously expressed human phosphatidylinositol 3-kinase and identification of its binding site on p85. Mol. Cell. Biol. 13:7677–7688.
  • Jackson, T. R., L. R. Stephens, and P. T. Hawkins. 1992. Receptor specificity of growth factor-stimulated synthesis of 3-phosphory-lated inositol lipids in Swiss 3T3 cells. J. Biol. Chem. 267:16627–16636.
  • Kaplan, D. R., M. Whitman, B. Schaffhausen, D. C. Pallas, M. White, L. Cantley, and T. M. Roberts. 1987. Common elements in growth factor stimulation and oncogenic transformation: 85 kd phosphoprotein and phosphatidylinositol kinase activity. Cell 50:1021–1029.
  • Kaplan, D. R., M. Whitman, B. Schaffhausen, L. Raptis, R. L. Garcea, D. Pallas, T. M. Roberts, and L. Cantley. 1986. Phosphatidylinositol metabolism and polyoma-mediated transformation. Proc. Natl. Acad. Sci. USA 83:3624–3628.
  • Kashishian, A., A. Kazlauskas, and J. A. Cooper. 1992. Phosphorylation sites in the PDGF receptor with different specificities for binding GAP and PI3 kinase in vivo. EMBO J. 11:1373–1382.
  • Klippel, A., J. A. Escobedo, W. J. Fantl, and L. T. Williams. 1992. The C-terminal SH2 domain of p85 accounts for the high affinity and specificity of the binding of phosphatidylinositol 3-kinase to phosphorylated platelet-derived growth factor β receptor. Mol. Cell. Biol. 12:1451–1459.
  • Klippel, A., J. A. Escobedo, Q. Hu, and L. T. Williams. 1993. A region of the 85-kilodalton (kDa) subunit of phosphatidylinositol 3-kinase binds the 110-kDa catalytic subunit in vivo. Mol. Cell. Biol. 13:5560–5566.
  • Kozak, M. 1989. The scanning model for translation: an update. J. Cell Biol. 108:229–241.
  • Lev, S., D. Givol, and Y. Yarden. 1991. A specific combination of substrates is involved in signal transduction by the kit-encoded receptor. EMBO J. 10:647–654.
  • Lev, S., D. Givol, and Y. Yarden. 1992. Interkinase domain of kit contains the binding site for phosphatidylinositol 3′ kinase. Proc. Natl. Acad. Sci. USA 89:678–682.
  • Ling, L. E., B. J. Druker, L. C. Cantley, and T. M. Roberts. 1992. Transformation-defective mutants of polyomavirus middle T antigen associate with phosphatidylinositol 3-kinase (PI 3-kinase) but are unable to maintain wild-type levels of PI 3-kinase products in intact cells. J. Virol. 66:1702–1708.
  • Lips, D. L., P. W. Majerus, F. R. Gorga, A. T. Young, and T. L. Benjamin. 1989. Phosphatidylinositol 3-phosphate is present in normal and transformed fibroblasts and is resistant to hydrolysis by bovine brain phospholipase C II. J. Biol. Chem. 264:8759–8763.
  • McGlade, C. J., C. Ellis, M. Reedijk, D. Anderson, G. Mbamalu, A. D. Reith, G. Panayotou, P. End, A. Bernstein, A. Kazlauskas, M. D. Waterfield, and T. Pawson. 1992. SH2 domains of the p85α subunit of phosphatidylinositol 3-kinase regulate binding to growth factor receptors. Mol. Cell. Biol. 12:991–997.
  • Moran, M. F., C. A. Koch, D. Anderson, C. Ellis, L. England, G. S. Martin, and T. Pawson. 1990. Src homology region 2 domains direct protein-protein interactions in signal transduction. Proc. Natl. Acad. Sci. USA 87:8622–8626.
  • Myers, M. G., Jr., J. M. Backer, X. J. Sun, S. Shoelson, P. Hu, J. Schlessinger, M. Yoakim, B. Schaffhausen, and M. F. White. 1992. IRS-1 activates phosphatidylinositol 3′-kinase by associating with src homology 2 domains of p85. Proc. Natl. Acad. Sci. USA 89:10350–10354.
  • Nishimura, R., W. Li, A. Kashishian, A. Mondino, M. Zhou, J. Cooper, and J. Schlessinger. 1993. Two signaling molecules share a phosphotyrosine-containing binding site in the platelet-derived growth factor receptor. Mol. Cell. Biol. 13:6889–6896.
  • Otsu, M., I. Hiles, I. Gout, M. J. Fry, F. Ruiz-Larrea, G. Panayotou, A. Thompson, R. Dhand, J. Hsuan, N. Totty, A. D. Smith, S. J. Morgan, S. A. Courtneidge, P. J. Parker, and M. D. Waterfield. 1991. Characterization of two 85 kd proteins that associate with receptor tyrosine kinases, middle-T/pp60c-src complexes, and PI3-kinase. Cell 65:91–104.
  • Peles, E., R. Lamprecht, R. Ben-Levy, E. Tzahar, and Y. Yarden. 1992. Regulated coupling of the Neu receptor to phosphatidyli-nositol 3′-kinase and its release by oncogenic activation. J. Biol. Chem. 267:12266–12274.
  • Remillard, B., R. Petrillo, W. Maslinski, M. Tsudo, T. B. Strom, L. Cantley, and L. Varticovski. 1991. Interleukin-2 receptor regulates activation of phosphatidylinositol 3-kinase. J. Biol. Chem. 266:14167–14170.
  • Ren, R., B. J. Mayer, P. Cicchetti, and D. Baltimore. 1993. Identification of a ten-amino acid proline-rich SH3 binding site. Science 259:1157–1161.
  • Rottapel, R., M. Reedijk, D. E. Williams, S. D. Lyman, D. M. Anderson, T. Pawson, and A. Bernstein. 1991. The Steel/W transduction pathway: Kit autophosphorylation and its association with a unique subset of cytoplasmic signaling proteins is induced by the Steel factor. Mol. Cell. Biol. 11:3043–3051.
  • Ruderman, N. B., R. Kapeller, M. F. White, and L. C. Cantley. 1990. Activation of phosphatidylinositol 3-kinase by insulin. Proc. Natl. Acad. Sci. USA 87:1411–1415.
  • Serunian, L. A., K. R. Auger, T. M. Roberts, and L. C. Cantley. 1990. Production of novel polyphosphoinositides in vivo is linked to cell transformation by polyomavirus middle T antigen. J. Virol. 64:4718–4725.
  • Serunian, L. A., M. T. Haber, T. Fukui, J. W. Kim, S. G. Rhee, J. M. Lowenstein, and L. C. Cantley. 1989. Polyphosphoinositides produced by phosphatidylinositol 3-kinase are poor substrates for phospholipases C from rat liver and bovine brain. J. Biol. Chem. 264:17809–17815.
  • Shibasaki, F., Y. Homma, and T. Takenawa. 1991. Two types of phosphatidylinositol 3-kinase from bovine thymus. J. Biol. Chem. 266:8108–8114.
  • Skolnik, E. Y., B. Margolis, M. Mohammadi, E. Lowenstein, R. Fischer, A. Drepps, A. Ullrich, and J. Schlessinger. 1991. Cloning of PI3 kinase-associated p85 utilizing a novel method for expression/cloning of target proteins for receptor tyrosine kinases. Cell 65:83–90.
  • Smith, D. B., and K. S. Johnson. 1988. Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase. Gene 67:31–40.
  • Soltoff, S. P., S. L. Rabin, L. C. Cantley, and D. R. Kaplan. 1992. Nerve growth factor promotes the activation of phosphatidylinositol 3-kinase and its association with the trk tyrosine kinase. J. Biol. Chem. 267:17472–17477.
  • Talmage, D. A., R. Freund, A. T. Young, J. Dahl, C. J. Dawe, and T. L. Benjamin. 1989. Phosphorylation of middle T by pp60c-src: a switch for binding of phosphatidylinositol 3-kinase and optimal tumorigenesis. Cell 59:55–65.
  • Tyers, M., G. Tokiwa, R. Nash, and B. Futcher. 1992. The Cln3-Cdc28 kinase complex of S. cerevisiae is regulated by proteolysis and phosphorylation. EMBO J. 11:1773–1784.
  • Ulug, E. T., P. T. Hawkins, M. R. Hanley, and S. A. Courtneidge. 1990. Phosphatidylinositol metabolism in cells transformed by polyomavirus middle T antigen. J. Virol. 64:3895–3904.
  • Varticovski, L., G. Q. Daley, P. Jackson, D. Baltimore, and L. C. Cantley. 1991. Activation of phosphatidylinositol 3-kinase in cells expressing abl oncogene variants. Mol. Cell. Biol. 11:1107–1113.
  • Varticovski, L., B. Druker, D. Morrison, L. Cantley, and T. Roberts. 1989. The colony stimulating factor-1 receptor associates with and activates phosphatidylinositol-3 kinase. Nature (London) 342:699–702.
  • Whitman, M., C. P. Downes, M. Keeler, T. Keller, and L. Cantley. 1988. Type I phosphatidylinositol kinase makes a novel inositol phospholipid, phosphatidylinositol-3-phosphate. Nature (London) 332:644–646.
  • Whitman, M., D. R. Kaplan, B. Schaffhausen, L. Cantley, and T. M. Roberts. 1985. Association of phosphatidylinositol kinase activity with polyoma middle-T competent for transformation. Nature (London) 315:239–242.
  • Zippel, R., E. Sturani, L. Toschi, L. Naldini, L. Alberghina, and P. M. Comoglio. 1986. In vivo phosphorylation and dephosphory-lation of the platelet-derived growth factor receptor studied by immunoblot analysis with phosphotyrosine antibodies. Biochim. Biophys. Acta 881:54–61.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.