1
Views
3
CrossRef citations to date
0
Altmetric
DNA Dynamics and Chromosome Structure

Histone H1 Expressed in Saccharomyces cerevisiae Binds to Chromatin and Affects Survival, Growth, Transcription, and Plasmid Stability but Does Not Change Nucleosomal Spacing

&
Pages 2822-2835 | Received 13 Sep 1993, Accepted 19 Jan 1994, Published online: 30 Mar 2023

REFERENCES

  • Allan, J., P. G. Hartmann, C. Crane-Robinson, and F. X. Aviles. 1980. The structure of histone H1 and its location in chromatin. Nature (London) 288:675–679.
  • Arceci, R. J., and P. R. Gross. 1980. Histone variants and chromatin structure during sea urchin development. Dev. Biol. 80:186–209.
  • Axelrod, J. D., M. S. Reagan, and J. Majors. 1993. GAL4 disrupts a repressing nucleosome during activation of GAL1 transcription in vivo. Genes Dev. 7:857–869.
  • Bates, D. L., P. J. G. Butler, E. C. Pearson, and J. O. Thomas. 1981. Stability of the higher order structure of chicken erythrocyte chromatin in solution. Eur. J. Biochem. 119:469–476.
  • Bates, D. L., and J. O. Thomas. 1981. Histones H1 and H5: one or two molecules per nucleosome? Nucleic Acids Res. 9:5883–5894.
  • Bavykin, S. G., S. I. Usachenko, A. I. Lishanskaya, V. V. Snick, A. V. Belyavsky, I. M. Undritsov, A. A. Strokov, I. A. Zalenskaya, and A. D. Mirzabekov. 1985. Primary organization of nucleosomal core particles is invariable in repressed and active nuclei from animal, plant and yeast cells. Nucleic Acids Res. 13:3439–3459.
  • Bernardi, F., T. Roller, and F. Thoma. 1991. The ade6 gene of the fission yeast Schizosaccharomyces pombe has the same chromatin structure in the chromosome and in plasmids. Yeast 7:547–558.
  • Birnstiel, M. L., and M. Busslinger (Institute of Molecular Pathology, Vienna, Austria). Personal communication.
  • Boulikas, T., J. M. Wiseman, and W. T. Garrard. 1980. Points of contact between histone H1 and the histone octamer. Proc. Natl. Acad. Sci. USA 77:127–131.
  • Breeuwer, M., and D. S. Goldfarb. 1990. Facilitated nuclear transport of histone H1 and other small nucleophilic proteins. Cell 60:999–1008.
  • Brill, S. J., S. DiNardo, K. Voelkel-Meiman, and R. Sternglanz. 1987. Need for DNA topoisomerase activity as a swivel for DNA replication and for transcription of ribosomal RNA. Nature (London) 326:414–416.
  • Cavalli, G., and F. Thoma. 1993. Chromatin transitions during activation and repression of galactose-regulated genes in yeast. EMBO J. 12:4603–4613.
  • Croston, G. E., P. J. Laybourn, S. M. Paranjape, and J. T. Kadonaga. 1992. Mechanism of transcriptional antirepression by GAL4-VP16. Genes Dev. 6:2270–2281.
  • Davie, J. R., C. A. Saunders, J. M. Walsh, and S. C. Weber. 1981. Histone modifications in the yeast S. cerevisiae. Nucleic Acids Res. 9:3205–3215.
  • Dingwall, C., and J. Allan. 1984. Accumulation of the isolated carboxy-terminal domain of histone H1 in the Xenopus oocyte nucleus. EMBO J. 3:1933–1937.
  • Fedor, M. J., and R. D. Romberg. 1989. Upstream activation sequence-dependent alteration of chromatin structure and transcription activation of the yeast GAL1-GAL10 genes. Mol. Cell. Biol. 9:1721–1732.
  • Frado, L.-L. Y., C. V. Mura, B. D. Stollar, and C. L. F. Woodcock. 1983. Mapping of histone H5 sites on nucleosomes using immu-noelectron microscopy. J. Biol. Chem. 258:11984–11990.
  • Gerace, L., and B. Burke. 1988. Functional organization of the nuclear envelope. Annu. Rev. Cell Biol. 4:335–374.
  • Grunstein, M. 1990. Nucleosomes: regulators of transcription. Trends Genet. 6:395–400.
  • Hill, C. S., S. R. Martin, and J. O. Thomas. 1989. A stable α-helical element in the carboxy-terminal domain of free and chromatin-bound histone H1 from sea urchin sperm. EMBO J. 8:2591–2599.
  • Hill, J. E., A. M. Myers, T. J. Koerner, and A. Tzagoloff. 1986. Yeast/E. coli shuttle vectors with multiple unique restriction sites. Yeast 2:163–167.
  • Ito, H., Y. Fukuda, K. Murata, and A. Kimura. 1983. Transformation of intact yeast cells treated with alkali cations. J. Bacteriol. 153:163–168.
  • Jensen, R., G. F. Sprague, and I. Herskowitz. 1983. Regulation of yeast mating-type interconversion: feedback of HO gene expression by the mating-type. Proc. Natl. Acad. Sci. USA 80:3035–3039.
  • Johnston, M., and R. W. Davis. 1984. Sequences that regulate the divergent GAL1-GAL10 promoter in Saccharomyces cerevisiae. Mol. Cell. Biol. 4:1440–1448.
  • Kamakaka, R. T., M. Bulger, and J. T. Kadonaga. 1993. Potentiation of RNA polymerase-II transcription by Gal4-VP16 during but not after DNA replication and chromatin assembly. Genes Dev. 7:1779–1795.
  • Künzler, P., and A. Stein. 1983. Histone H5 can increase the internucleosomal spacing in dinucleosomes to nativelike values. Biochemistry 22:1783–1789.
  • Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (London) 227:680–685.
  • Lennard, A. C., and J. O. Thomas. 1985. The arrangement of H5 molecules in extended and condensed chicken erythrocyte chromatin. EMBO J. 4:3455–3462.
  • Lohr, D. 1984. Organization of the GAL1-GAL10 intergenic control region chromatin. Nucleic Acids Res. 12:8457–8474.
  • Lohr, D. 1988. Isolation of yeast nuclei and chromatin for studies of transcription-related processes, p. 125–145. In I. Campbell, and J. H. Duffus (ed.), Yeast: a practical approach. IRL Press, Oxford.
  • Lohr, D., R. T. Kovacic, and K. E. Van Holde. 1977. Quantitative analysis of yeast chromatin by staphylococcal nuclease. Biochemistry 16:463–471.
  • Lohr, D., T. Torchia, and J. Hopper. 1987. The regulatory protein GAL80 is a determinant of the chromatin structure of the yeast GAL1-10 control region. J. Biol. Chem. 262:15589–15597.
  • Losa, R., S. Oman, and F. Thoma. 1990. Poly(dA)-poly(dT) rich sequences are not sufficient to exclude nucleosome formation in a constitutive yeast promoter. Nucleic Acids Res. 18:3495–3502.
  • Losa, R., F. Thoma, and T. Roller. 1984. Involvement of the globular domain of histone H1 in the higher order structures of chromatin. J. Mol. Biol. 175:529–551.
  • Mann, R. K., and M. Grunstein. 1992. Histone H3 N-terminal mutations allow hyperactivation of the yeast GAL1 gene in vivo. EMBO J. 11:3297–3306.
  • Meeks-Wagner, D., and L. H. Hartwell. 1986. Normal stoichiom-etry of histone dimer sets is necessary for high fidelity of mitotic chromosome transmission. Cell 44:43–52.
  • Moreland, R. B., G. L. Langevin, R. H. Singer, R. L. Garcea, and L. M. Hereford. 1987. Amino acid sequences that determine the nuclear localization of yeast histone 2B. Mol. Cell. Biol. 7:4048–4057.
  • Neelin, J. M., P. X. Callahan, D. C. Lamb, and K. Murray. 1964. The histones of chicken erythrocyte nuclei. Can. J. Biochem. 42:1743–1752.
  • Negri, R. Personal communication.
  • Noll, M., and R. D. Romberg. 1977. Action of micrococcal nuclease on chromatin and the location of histone H1. J. Mol. Biol. 109:393–404.
  • Pederson, D. S., F. Thoma, and R. T. Simpson. 1986. Core particle, fiber and transcriptionally active chromatin structure. Annu. Rev. Cell Biol. 2:117–147.
  • Renz, M., P. Nehls, and J. Hozier. 1977. Involvement of histone H1 in the organization of the chromosome fiber. Proc. Natl. Acad. Sci. USA 74:1879–1883.
  • Sanders, C., and E. W. Johns. 1974. A method for the large-scale preparation of two chromatin proteins. Biochem. Soc. Trans. 2:547–550.
  • Santiago, T. C., I. J. Purvis, A. J. E. Bettany, and A. J. P. Brown. 1986. The relationship between mRNA stability and length in Saccharomyces cerevisiae. Nucleic Acids Res. 14:8347–8360.
  • Schaffner, W., G. Kunz, H. Daetwyler, J. Telford, H. O. Smith, and M. L. Birnstiel. 1978. Genes and spacers of cloned sea urchin histone DNA analyzed by sequencing. Cell 14:655–671.
  • Shaw, B. R., G. Cognetti, W. M. Sholes, and R. G. Richards. 1981. Shift in nucleosome populations during embryogenesis: microhet-erogeneity in nucleosomes during development of the sea urchin embryo. Biochemistry 20:4971–4978.
  • Sherman, F., G. R. Fink, and J. B. Hicks. 1981. Methods in yeast genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Shwed, P. S., J. M. Neelin, and V. L. Seligy. 1992. Expression of Xenopus laevis histone H5 gene in yeast. Biochim. Biophys. Acta 1131:152–160.
  • Simpson, R. T. 1978. Structure of the chromatosome, a chromatin particle containing 160 base pairs of DNA and all the histones. Biochemistry 17:5524–5531.
  • Snyder, M., R. Sapolsky, and R. W. Davis. 1988. Transcription interferes with elements important for chromosome maintenance in Saccharomyces cerevisiae. Mol. Cell. Biol. 8:2184–2194.
  • St. John, T. P., and R. W. Davis. 1981. The organization and transcription of the galactose gene cluster of Saccharomyces. J. Mol. Biol. 152:285–315.
  • Sun, J.-M., Z. Ali, R. Lurz, and A. Ruiz-Carrillo. 1990. Replacement of histone H1 by H5 in vivo does not change the nucleosome repeat length of chromatin but increases its stability. EMBO J. 9:1651–1658.
  • Sun, J.-M., R. Wiaderkiewicz, and A. Ruiz-Carrillo. 1989. Histone H5 in the control of DNA synthesis and cell proliferation. Science 245:68–71.
  • Thoma, F. 1986. Protein-DNA interactions and nuclease sensitive regions determine nucleosome positions on yeast plasmid chromatin. J. Mol. Biol. 190:177–190.
  • Thoma, F. 1988. The role of histone H1 in nucleosomes and chromatin fibers, p. 163–185. In G. Kahl (ed.), Architecture of eukaryotic genes. VCH, Weinheim, Germany.
  • Thoma, F., L. W. Bergman, and R. T. Simpson. 1984. Nuclease digestion of circular TRP1ARS1 chromatin reveals positioned nucleosomes separated by nuclease sensitive regions. J. Mol. Biol. 177:715–733.
  • Thoma, F., and T. Koller. 1977. Influence of histone H1 on chromatin structure. Cell 12:101–107.
  • Thoma, F., and T. Roller. 1981. Unravelled nucleosomes, nucleosome beads and higher order structures of chromatin: influence of non-histone components and histone H1. J. Mol. Biol. 148:709–733.
  • Thoma, F., T. Roller, and A. Rlug. 1979. Involvement of histone H1 in the organization of the nucleosome and of the salt dependent superstructures of chromatin. J. Cell Biol. 83:403–427.
  • Thoma, F., R. Losa, and T. Roller. 1983. Involvement of the domains of histone H1 in the higher order structures of chromatin. J. Mol. Biol. 167:619–640.
  • Thomas, J. O., and V. Furber. 1976. Yeast chromatin structure. FEBS Lett. 66:274–280.
  • Thomas, P. S. 1983. Hybridization of denatured RNA and small DNA fragments transferred to nitrocellulose. Methods Enzymol. 100:254–266.
  • Tremethick, D. J., and M. Frommer. 1992. Partial purification, from Xenopus laevis oocytes, of an ATP-dependent activity required for nucleosome spacing in vitro. J. Biol. Chem. 267:15041–15048.
  • Van Holde, R. E. 1989. Chromatin. Springer-Verlag KG, Berlin.
  • Workman, J. L., and R. E. Kingston. 1992. Nucleosome core displacement in vitro via a metastable transcription factor nucleosome complex. Science 258:1780–1784.
  • Wray, W., T. Boulikas, V. P. Wray, and R. Hancock. 1981. Silver staining of proteins in polyacrylamide gels. Anal. Biochem. 118:197–203.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.