4
Views
8
CrossRef citations to date
0
Altmetric
Gene Expression

Mutations in the GCD7 Subunit of Yeast Guanine Nucleotide Exchange Factor eIF-2B Overcome the Inhibitory Effects of Phosphorylated eIF-2 on Translation Initiation

&
Pages 3208-3222 | Received 18 Oct 1993, Accepted 10 Feb 1994, Published online: 30 Mar 2023

REFERENCES

  • Abastado, J. P., P. F. Miller, B. M. Jackson, and A. G. Hinnebusch. 1991. Suppression of ribosomal reinitiation at upstream open reading frames in amino acid-starved cells forms the basis for GCN4 translational control. Mol. Cell. Biol. 11:486–496.
  • Broach, J., J. Strathern, and J. Hicks. 1979. Transformation in yeast: development of a hybrid cloning vector, and isolation of the CAN1 gene. Gene 8:121–133.
  • Bushman, J. L., A. I. Asuru, R. L. Matts, and A. G. Hinnebusch. 1993. Evidence that GCD6 and GCD7, translational regulators of GCN4, are subunits of the guanine nucleotide exchange factor for eIF-2 in Saccharomyces cerevisiae. Mol. Cell. Biol. 13:1920–1932.
  • Bushman, J. L., M. Foiani, A. M. Cigan, C. J. Paddon, and A. G. Hinnebusch. 1993. Guanine nucleotide exchange factor for eIF-2 in yeast: genetic and biochemical analysis of interactions between essential subunits GCD2, GCD6 and GCD7 and regulatory subunit GCN3. Mol. Cell. Biol. 13:4618–4631.
  • Chong, K. L., L. Feng, K. Schappert, E. Meurs, T. F. Donahue, J. D. Friesen, A. G. Hovanessian, and B. R. G. Williams. 1992. Human p68 kinase exhibits growth suppression in yeast and homology to the translational regulator GCN2. EMBO J. 11:1553–1562.
  • Cigan, A. M., J. L. Bushman, T. R. Boal, and A. G. Hinnebusch. 1993. A protein complex of translational regulators of GCN4 is the guanine nucleotide exchange factor for eIF-2 in yeast. Proc. Natl. Acad. Sci. USA 90:5350–5354.
  • Cigan, A. M., M. Foiani, E. M. Hannig, and A. G. Hinnebusch. 1991. Complex formation by positive and negative translational regulators of GCN4. Mol. Cell. Biol. 11:3217–3228.
  • Cigan, A. M., E. K. Pabich, L. Feng, and T. F. Donahue. 1989. Yeast translation initiation suppressor sui2 encodes the alpha subunit of eukaryotic initiation factor 2 and shares identity with the human alpha subunit. Proc. Natl. Acad. Sci. USA 86:2784–2788.
  • Dever, T. E., J.-J. Chen, G. N. Barber, A. M. Cigan, L. Feng, T. F. Donahue, I. M. London, M. G. Katze, and A. G. Hinnebusch. 1993. Mammalian eukaryotic initiation factor 2a kinases functionally substitute for GCN2 in the GCN4 translational control mechanism of yeast. Proc. Natl. Acad. Sci. USA 90:4616–4620.
  • Dever, T. E., L. Feng, R. C. Wek, A. M. Cigan, T. D. Donahue, and A. G. Hinnebusch. 1992. Phosphorylation of initiation factor 2α by protein kinase GCN2 mediates gene-specific translational control of GCN4 in yeast. Cell 68:585–596.
  • Donahue, T. F., A. M. Cigan, E. K. Pabich, and B. Castilho-Valavicius. 1988. Mutations at a Zn(II) finger motif in the yeast eΙF-2β gene alter ribosomal start-site selection during the scanning process. Cell 54:621–632.
  • Ernst, H., R. F. Duncan, and J. W. B. Hershey. 1987. Cloning and sequencing of complementary DNAs encoding the α-subunit of translational initiation factor eIF-2. J. Biol. Chem. 262:1206–1212.
  • Hannig, E. Η., N. P. Williams, R. C. Wek, and A. G. Hinnebusch. 1990. The translational activator GCN3 functions downstream from GCN1 and GCN2 in the regulatory pathway that couples GCN4 expression to amino acid availability in Saccharomyces cerevisiae. Genetics 126:549–562.
  • Hannig, E. M., A. M. Cigan, B. A. Freeman, and T. G. Kinzy. 1992. GCD11, a negative regulator of GCN4 expression, encodes the gamma subunit of eIF-2 in Saccharomyces cerevisiae. Mol. Cell. Biol. 13:506–520.
  • Hannig, E. M., and A. G. Hinnebusch. 1988. Molecular analysis of GCN3, a translational activator of GCN4: evidence for posttranslational control of GCN3 regulatory function. Mol. Cell. Biol. 8:4808–4820.
  • Harashima, S., E. M. Hannig, and A. G. Hinnebusch. 1987. Interactions between positive and negative regulators of GCN4 controlling gene expression and entry into the yeast cell cycle. Genetics 117:409–419.
  • Harashima, S., and A. G. Hinnebusch. 1986. Multiple GCD genes required for repression of GCN4, a transcriptional activator of amino acid biosynthetic genes in Saccharomyces cerevisiae. Mol. Cell. Biol. 6:3990–3998.
  • Hershey, J. W. B. 1991. Translational control in mammalian cells. Annu. Rev. Biochem. 60:717–755.
  • Hill, D. E., and K. Struhl. 1988. Molecular characterization of GCD1, a yeast gene required for general control of amino acid biosynthesis and cell-cycle initiation. Nucleic Acids Res. 16:9253–9265.
  • Hinnebusch, A. G. 1988. Mechanisms of gene regulation in the general control of amino acid biosynthesis in Saccharomyces cerevisiae. Microbiol. Rev. 52:248–273.
  • Hinnebusch, A. G. 1992. General and pathway-specific regulatory mechanisms controlling the synthesis of amino acid biosynthetic enzymes in Saccharomyces cerevisiae, p. 319–414. In E. W. Jones, J. R. Pringle, and J. R. Broach (ed.), The molecular and cellular biology of the yeast Saccharomyces: gene expression. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Hinnebusch, A. G., and G. R. Fink. 1983. Positive regulation in the general amino acid control of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 80:5374–5378.
  • Ito, Η., Y. Fukada, K. Murata, and A. Kimura. 1983. Transformation of intact yeast cells treated with alkali cations. J. Bacteriol. 153:163–168.
  • Konieczny, A., and B. Safer. 1983. Purification of the eukaryotic initiation factor 2-eukaryotic initiation factor 2B complex and characterization of its guanine nucleotide exchange activity during protein synthesis initiation. J. Biol. Chem. 258:3402–3408.
  • Lanker, S., J. L. Bushman, A. G. Hinnebusch, H. Trachsel, and P. P. Mueller. 1992. Autoregulation of the yeast lysyl-tRNA synthetase gene GCD5/KRS1 by translational and transcriptional control mechanisms. Cell 70:647–657.
  • London, I. M., D. H. Levin, R. L. Matts, N. S. B. Thomas, R. Petryshyn, and J. J. Chen. 1987. Regulation of protein synthesis, p. 359–380. In P. D. Boyer, and E. G. Krebs (ed.), The enzymes, vol. 18. Academic Press, Inc., New York.
  • Lucchini, G., A. G. Hinnebusch, C. Chen, and G. R. Fink. 1984. Positive regulatory interactions of the HIS4 gene of Saccharomyces cerevisiae. Mol. Cell. Biol. 4:1326–1333.
  • Marton, M. J., D. Crouch, and A. G. Hinnebusch. 1993. GCN1, a translational activator of GCN4 in S. cerevisiae, is required for phosphorylation of eukaryotic translation initiation factor 2 by protein kinase GCN2. Mol. Cell. Biol. 13:3541–3556.
  • Matts, R., D. Levin, and I. London. 1983. Effect of phosphorylation of the alpha-subunit of eukaryotic initiation factor 2 on the function of reversing factor in the initiation of protein synthesis. Proc. Natl. Acad. Sci. USA 80:2559–2563.
  • Merrick, W. C. 1992. Mechanism and regulation of eukaryotic protein synthesis. Microbiol. Rev. 56:291–315.
  • Meurs, E., K. Chong, J. Galabru, N. S. B. Thomas, I. M. Kerr, B. R. G. Williams, and A. G. Hovanessian. 1990. Molecular cloning and characterization of the human double-stranded RNA-activated protein kinase induced by interferon. Cell 62:379–390.
  • Paddon, C. J., and A. G. Hinnebusch. 1989. gcd12 mutations are gcn3-dependent alleles of GCD2, a negative regulator of GCN4 in the general amino acid control of Saccharomyces cerevisiae. Genetics 122:543–550.
  • Pain, V. M. 1986. Initiation of protein synthesis in mammalian cells. Biochem. J. 235:625–637.
  • Parent, S. A., C. M. Fenimore, and K. A. Bostian. 1985. Vector systems for the expression, analysis and cloning of DNA sequences in S. cerevisiae. Yeast 1:83–138.
  • Ramirez, M., R. C. Wek, C. R. Vazquez de Aldana, B. M. Jackson, B. Freeman, and A. G. Hinnebusch. 1992. Mutations activating the yeast eIF-2α kinase GCN2: isolation of alleles altering the domain related to histidyl-tRNA synthetases. Mol. Cell. Biol. 12:5801–5815.
  • Rolfes, R. J., and A. G. Hinnebusch. 1993. Translation of the yeast transcriptional activator GCN4 is stimulated by purine limitation: implications for activation of the protein kinase GCN2. Mol. Cell. Biol. 13:5099–5111.
  • Rose, M. D., and J. R. Broach. 1991. Cloning genes by complementation in yeast. Methods Enzymol. 194:195–230.
  • Rowlands, A. G., K. S. Montine, E. C. Henshaw, and R. Panniers. 1988. Physiological stresses inhibit guanine-nucleotide-exchange factor in Ehrlich cells. Eur. J. Biochem. 175:93–99.
  • Rowlands, A. G., R. Panniers, and E. C. Henshaw. 1988. The catalytic mechanism of guanine nucleotide exchange factor action and competitive inhibition by phosphorylated eukaryotic initiation factor 2. J. Biol. Chem. 263:5526–5533.
  • Sanger, F. S., S. Nicklen, and A. R. Coulson. 1977. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74:5463–5467.
  • Schurch, A., J. Miozzari, and R. Huetter. 1974. Regulation of tryptophan biosynthesis in Saccharomyces cerevisiae: mode of action of 5-methyltryptophan- and 5-methyltryptophan-sensitive mutants. J. Bacteriol. 117:1131–1140.
  • Sherman, F., G. R. Fink, and C. W. Lawrence. 1974. Methods of yeast genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Siekierka, J., V. Manne, and S. Ochoa. 1984. Mechanism of translational control by partial phosphorylation of the alpha subunit of eukaryotic initiation factor 2. Proc. Natl. Acad. Sci. USA 81:352–356.
  • Siekierka, J., L. Mauser, and S. Ochoa. 1982. Mechanism of polypeptide chain initiation in eukaryotes and its control by phosphorylation of the α subunit of initiation factor 2. Proc. Natl. Acad. Sci. USA 79:2537–2540.
  • Sikorski, R. S., and P. Hieter. 1989. A system of shuttle vectors and yeast host strains designated for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19–27.
  • Vazquez de Aldana, C. R., T. E. Dever, and A. G. Hinnebusch. 1993. Mutations in the α subunit of eukaryotic translation initiation factor 2 (eIF-2α) that overcome the inhibitory effects of eIF-2α phosphorylation on translation initiation. Proc. Natl. Acad. Sci. USA 90:7215–7219.
  • Wek, R. C., M. Ramirez, B. M. Jackson, and A. G. Hinnebusch. 1990. Identification of positive-acting domains in GCN2 protein kinase required for translational activation of GCN4 expression. Mol. Cell. Biol. 10:2820–2831.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.