4
Views
9
CrossRef citations to date
0
Altmetric
Gene Expression

TPD1 of Saccharomyces cerevisiae Encodes a Protein Phosphatase 2C-Like Activity Implicated in tRNA Splicing and Cell Separation

, , &
Pages 3634-3645 | Received 13 Oct 1993, Accepted 07 Mar 1994, Published online: 30 Mar 2023

REFERENCES

  • Arndt, K. T., C. A. Styles, and G. R. Fink. 1989. A suppressor of a HIS4 transcriptional defect encodes a protein with homology to the catalytic subunit of protein phosphatase. Cell 56: 527–537.
  • Boeke, J. D., F. La Croute, and G. R. Fink. 1984. A positive selection for mutants lacking orotidine-5′-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance. Mol. Gen. Genet. 197: 345–346.
  • Broach, J. R., J. N. Strathern, and J. B. Hicks. 1979. Transformation in yeast: development of a hybrid cloning vector and isolation of the CAN1 gene. Gene 8: 121–133.
  • Chen, M. X., Y. H. Chen, and P. T. W. Cohen. 1992. Polymerase chain reactions using Saccharomyces, Drosophila, and human DNA predict a large family of serine/threonine phosphatases. FEBS Lett. 306: 54–58.
  • Cohen, P. 1989. The structure and regulation of protein phosphatases. Annu. Rev. Biochem. 58: 453–508.
  • Cohen, P. 1992. Signal integration at the level of protein kinases, protein phosphatases, and their substrates. Trends Biochem. Sci. 17: 408–413.
  • Cohen, P., S. Klump, and D. L. Schelling. 1989. An improved procedure for identifying and quantitating protein phosphatases in mammalian tissues. FEBS Lett. 250: 596–600.
  • Cohen, P., D. L. Schelling, and M. J. R. Stark. 1989. Remarkable similarities between yeast and mammalian protein phosphatases. FEBS Lett. 250: 601–606.
  • Colicelli, J., J. Field, R. Ballester, N. Chester, D. Young, and M. Wigler. 1990. Mutational mapping of RAS-responsive domains of the Saccharomyces cerevisiae adenylyl cyclase. Mol. Cell. Biol. 10: 2539–2543.
  • Culver, G. M., S. M. McCraith, M. Zillmann, R. Kierzek, N. Michaud, R. D. LaReau, D. H. Turner, and E. M. Phizicky. 1993. A novel NAD+ derivative produced during tRNA splicing: ADP-ribose l″-2″ cyclic phosphate. Science 261: 206–208.
  • Cyert, M. S., R. Kunisawa, D. Kaim, and J. Thorner. 1991. Yeast has homologs (CNA1 and CNA2 gene products) of mammalian calcineurin, a calmodulin-regulated phophoprotein phosphatase. Proc. Natl. Acad. Sci. USA 88: 7376–7380.
  • DeMarini, D. J., M. Winey, D. Ursic, F. Webb, and M. R. Culbertson. 1992. SEN1: a positive effector of tRNA splicing endonuclease in Saccharomyces cerevisiae. Mol. Cell. Biol. 12: 2154–2164.
  • Edelman, A. M. L., D. K. Blumenthal, and E. G. Kreb. 1987. Protein serine/threonine kinases. Annu. Rev. Biochem. 56: 567–613.
  • Fedor-Chaiken, M., R. J. Deschenes, and J. R. Broach. 1990. SRV2, a gene required for RAS activation of adenylate cyclase in yeast. Cell 61: 329–340.
  • Feng, Z., S. E. Wilson, Z. Y. Peng, K. K. Schlender, E. M. Reimann, and R. J. Trumbly. 1991. The yeast GLC7 gene required for glycogen accumulation encodes a type 1 protein phosphatase. J. Biol. Chem. 266: 23796–23801.
  • Francois, J. M., S. Thompson-Jaeger, J. Skroch, U. Zellenka, W. Spevak, and K. Tatchell. 1992. GAC1 may encode a regulatory subunit for protein phosphatase type 1 in Saccharomyces cerevisiae. EMBO J. 11: 87–96.
  • Greer, C. L., C. L. Peebles, P. Gegenheimer, and J. Abelson. 1983. Mechanism of action of a yeast RNA ligase in tRNA splicing. Cell 32: 537–546.
  • Hanes, S. D., P. R. Shank, and K. A. Bostian. 1989. Sequence and mutational analysis of ESS1, a gene essential for growth in Saccharomyces cerevisiae. Yeast 5: 55–72.
  • Hardie, D. G., D. Carling, and A. T. R. Sim. 1989. The AMP-activated protein kinase: a multisubstrate regulator of lipid metabolism. Trends Biochem. Sci. 14: 20–23.
  • Healy, A. M., S. Zolnierowicz, A. E. Stapleton, M. Goebel, A. A. Depaoli-Roach, and J. R. Pringle. 1991. CDC55, a Saccharomyces cerevisiae gene involved in cellular morphogenesis: identification, characterization, and homology to the B subunit of mammalian type 2A protein phosphatase. Mol. Cell. Biol. 11: 5767–5780.
  • Hiraga, A., K. Kikuchi, and S. Tsuiki. 1981. Purification and characterization of Mg2+ dependent glycogen synthase phosphatase (phosphoprotein phosphatase IA) from rat liver. Eur. J. Biochem. 119: 503–510.
  • Ho, C. K., R. Rauhut, U. Vijayraghavan, and J. Abelson. 1990. Accumulation of pre-tRNA splicing ′2/3′ intermediates in a Saccharomyces cerevisiae mutant. EMBO J. 9: 1245–1252.
  • Hoffman, C. S., and F. Winston. 1987. A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli. Gene 57: 267–272.
  • Hopper, A., K. F. Banks, and V. Evangelidis. 1978. A yeast mutant which accumulates precursor tRNAs. Cell 14: 211–218.
  • Hopper, A. K., L. D. Schultz, and R. A. Shapiro. 1980. Processing of intervening sequences: a new yeast mutant which fails to excise intervening sequences from precursor tRNAs. Cell 19: 741–751.
  • Hopper, A. K., H. M. Traglia, and R. W. Dunst. 1990. The yeast RNA1 gene product necessary for RNA processing is located in the cytosol and is apparently excluded from the nucleus. J. Cell Biol. 111: 309.
  • Hunter, T. 1987. A thousand and one protein kinases. Cell 50: 823–829.
  • Hunter, T., and J. A. Cooper. 1985. Protein tyrosine kinases. Annu. Rev. Biochem. 54: 897–932.
  • Hurt, D. J., S. S. Wang, Y.-H. Lin, and A. K. Hopper. 1987. Cloning and characterization of LOS1, a Saccharomyces cerevisiae gene that affects tRNA splicing. Mol. Cell. Biol. 7: 1208–1216.
  • Ingebritsen, T. S., and P. Cohen. 1983. The protein phosphatases involved in cellular regulation: classification and substrate specificities. Eur. J. Biochem. 132: 255–261.
  • Ito, H., Y. Fukuda, K. Murata, and A. Kimura. 1983. Transformation of intact yeast cells treated with alkali cations. J. Bacteriol. 153: 163–168.
  • Knapp, G., R. C. Ogden, C. L. Peebles, and J. Abelson. 1979. Splicing of yeast tRNA precursors: structure of the reaction intermediates. Cell 18: 37–45.
  • Kuranda, M. J., and P. W. Robbins. 1991. Chitinase is required for cell separation during growth of Saccharomyces cerevisiae. J. Biol. Chem. 266: 19758–19767.
  • Lee, T. H., M. J. Sollomon, M. C. Mumby, and M. W. Kirschner. 1991. INH, a negative regulator of MPF, is a form of protein phosphatase 2A. Cell 64: 415–423.
  • Liu, Y. S., S. Ishii, M. Tokai, H. Tsutsumi, O. Ohki, R. Akada, K. Tanaka, E. Tsuchiya, S. Fukui, and T. Miyakawa. 1991. The Saccharomyces cerevisiae genes (CMP1 and CMP2) encoding cal-modulin-binding protein homologous to the catalytic subunit of mammalian protein phosphatase 2B. Mol. Gen. Genet. 227: 52–59.
  • Maeda, T., A. Y. M. Tsal, and H. Saito. 1993. Mutations in a protein tyrosine phosphatase gene (PTP2) and a protein serine/ threonine phosphatase gene (PTC1) cause a synthetic growth defect in Saccharomyces cerevisiae. Mol. Cell. Biol. 13: 5408–5417.
  • Maniatis, T., E. F. Fritsch, and J. Sambrook. 1982. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Mann, D. J., D. G. Campbell, C. H. McGowan, and P. T. W. Cohen. 1992. Mammalian protein serine/threonine phosphatase 2C: cDNA cloning and comparative analysis of amino acid sequences. Biochim. Biophys. Acta 1130: 100–104.
  • Marshall, M. S. 1985. Characterization of the SIR4 gene and its product: regulation of a yeast gene silencing element. Ph.D. thesis. Princeton University, Princeton, N.J.
  • McCraith, S. M., and E. M. Phizicky. 1990. A highly specific phosphatase from Saccharomyces cerevisiae implicated in tRNA splicing. Mol. Cell. Biol. 10: 1049–1055.
  • McCraith, S. M., and E. M. Phizicky. 1991. An enzyme from Saccharomyces cerevisiae uses NAD+ to transfer the splice junction 2′-phosphate from ligated tRNA to an acceptor molecule. J. Biol. Chem. 266: 11986–11992.
  • McCusker, J. H., and J. E. Haber. 1988. Cycloheximide resistant, temperature sensitive lethal mutation of Saccharomyces cerevisiae. Genetics 119: 305.
  • McCusker, J. H., D. S. Perlin, and J. E. Haber. 1987. Pleiotropic plasma membrane ATPase mutations of Saccharomyces cerevisiae. Mol. Cell. Biol. 7: 4082–4088.
  • McGowan, C. H., and P. Cohen. 1987. Identification of 2 isoenzymes of protein phosphatase 2C in both rabbit skeletal muscle and liver. Eur. J. Biochem. 166: 713–722.
  • McGowan, C. H., and P. Cohen. 1988. Protein phosphatase 2C from rabbit skeletal muscle and liver: an Mg2+ dependent enzyme. Methods Enzymol. 159: 416–426.
  • Messing, J. 1983. New M13 vectors for cloning. Methods Enzymol. 101: 20–79.
  • Mieskes, G., I. A. Brand, and H. Soling. 1984. Purification and characterization of a protein phosphatase from rat liver acting on key enzymes of glucose metabolism. Eur. J. Biochem. 140: 375–383.
  • Moore, F., J. Weekes, and D. G. Hardie. 1991. Evidence that AMP triggers phosphorylation as well as direct allosteric activation of rat liver AMP-activated protein kinase: a sensitive mechanism to protect the cell against ATP depletion. FEBS Lett. 199: 691–697.
  • Nasmyth, K. A., and S. I. Reed. 1979. Isolation of genes by complementation in yeast: molecular cloning of a cell-cycle gene. Proc. Natl. Acad. Sci. USA 77: 2119–2123.
  • O'Connor, J. P., and C. L. Peebles. 1992. PTA1, an essential gene of Saccharomyces cerevisiae affecting pre-tRNA processing. Mol. Cell. Biol. 12: 3843–3856.
  • Ohishi, S., M. Endo, T. Kobayashi, T. Terasawa, T. Murakami, M. Onoda, M. Ohnishi, T. Itoh, S. Tsuiki, and S. Tamura. 1992. Enhanced expression of type 2C protein phosphatase gene during myogenic differentiation of C3H10T1/2 cells. Biochem. Int. 28: 345–351.
  • Pato, M. D., and R. S. Adelstein. 1983. Characterization of a Mg2+-dependent phosphatase from turkey gizzard smooth muscle. J. Biol. Chem. 258: 7055–7058.
  • Peebles, C. L., P. Gegenheimer, and J. Abelson. 1983. Precise excision of intervening sequences from precursor tRNAs by a membrane-associated yeast endonuclease. Cell 32: 525–536.
  • Peng, Z.-Y., W. Wang, S. E. Wilson, K. K. Schlender, R. J. Trumblyu, and E. M. Reimann. 1991. Identification of a glycogen synthase phosphatase from yeast Saccharomyces cerevisiae as protein phosphatase 2A. J. Biol. Chem. 266: 10925–10932.
  • Phizicky, E. M., S. A. Consaul, K. W. Nehrke, and J. Abelson. 1992. Yeast tRNA ligase mutants are nonviable and accumulate tRNA splicing intermediates. J. Biol. Chem. 267: 4577–4582.
  • Phizicky, E. M., R. C. Schwartz, and J. Abelson. 1986. Saccharomyces cerevisiae tRNA ligase: purification of the protein and isolation of the structural gene. J. Biol. Chem. 261: 2978–2986.
  • Rauhut, R., P. R. Green, and J. Abelson. 1990. Yeast tRNA-splicing endonuclease is a heterotrimeric enzyme. J. Biol. Chem. 265: 18180–18184.
  • Robinson, L. C., M. M. Menold, S. Garrett, and M. R. Culbertson. 1993. Casein kinase I-like protein kinases encoded by YCK1 and YCK2 are required for yeast morphogenesis. Mol. Cell. Biol. 13: 2870–2881.
  • Ronne, H., M. Carlberg, G. Z. Hu, and J. O. Nehlin. 1991. Protein phosphatase 2A in Saccharomyces cerevisiae: effects on cell growth and bud morphogenesis. Mol. Cell. Biol. 11: 4876–4884.
  • Rose, M. D., P. Novick, J. H. Thomas, D. Botstein, and G. R. Fink. 1987. A Saccharomyces cerevisiae genomic plasmid bank based on a centromere-containing shuttle vector. Gene 60: 237–243.
  • Rose, M. D., F. Winston, and P. Hieter. 1988. Methods in yeast genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Sanger, F., S. Nicklen, and A. R. Coulson. 1977. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74: 5463–5467.
  • Sherman, F., G. Fink, and J. B. Hicks. 1986. Methods in yeast genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Silhavy, T. J., M. L. Herman, and L. W. Enquist. 1984. Experiments with gene fusions. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Sneddon, A. A., P. T. W. Cohen, and M. J. R. Stark. 1990. S. cerevisiae protein phosphatase 2A performs essential cellular function and is encoded by two genes. EMBO J. 9: 4339–4346.
  • Stark, M. J. R. 1987. Multicopy expression vectors carrying the lac repressor gene for regulated high-level expression of genes in Escherichia coli. Gene 51: 255–267.
  • Suzuki, N., H. R. Choe, Y. Nishida, Y. Ymamwaki-Kataoka, S. Ohnishi, T. Tamaoki, and T. Kataoka. 1990. Leucine-rich repeats and carboxyl terminus are required for interaction of yeast adenylate cyclase with RAS proteins. Proc. Natl. Acad. Sci. USA 87: 8711–8715.
  • Takai, A., C. Bialogan, M. Troschka, and J. Ruegg. 1987. Smooth muscle myosin phosphatase inhibition and force enhancement by black sponge toxin. FEBS Lett. 217: 81–84.
  • Tamura, S., K. R. Lynch, J. Larner, J. Fox, A. Yansui, K. Kikuchi, Y. Suzuki, and S. Tsuiki. 1989. Molecular cloning of the rat type 2C (IA) protein phosphatase mRNA. Proc. Natl. Acad. Sci. USA 86: 1796–1800.
  • Tamura, S., A. Yasui, and S. Tsuiki. 1989. Expression of rat type 2C (1A) in Escherichia coli. Biochem. Biophys. Res. Commun. 163: 131–136.
  • Traglia, H. M., N. S. Atkinson, and A. K. Hopper. 1989. Structural and functional analyses of Saccharomyces cerevisiae wild-type and mutant RNA1 genes. Mol. Cell. Biol. 9: 2989–2999.
  • van Zyl, W. H. 1989. Isolation and characterization of mutants in yeast defective in tRNA synthesis. Ph.D. thesis. Princeton University, Princeton, N.J.
  • van Zyl, W. H., W. Huang, A. A. Sneddon, M. Stark, S. Camier, M. Werner, C. Marck, A. Sentenac, and J. R. Broach. 1992. Inactivation of the protein phosphatase 2A regulatory subunit A results in morphological and transcriptional defects in Saccharomyces cerevisiae. Mol. Cell. Biol. 12: 4946–4959.
  • van Zyl, W. H., N. Wills, and J. R. Broach. 1989. A general screen for mutants of Saccharomyces cerevisiae defective in tRNA biosynthesis. Genetics 123: 55–68.
  • Wang, S. S., and A. K. Hopper. 1988. Isolation of a yeast gene involved in species-specific pre-tRNA processing. Mol. Cell. Biol. 8: 5140–5149.
  • Wenk, J., H. I. Trompeter, K. G. Pettrich, P. T. W. Cohen, D. G. Campbell, and G. Mieskes. 1992. Molecular cloning and primary structure of protein phosphatase 2C isoform. FEBS Lett. 297: 135–138.
  • Winey, M., and M. R. Culbertson. 1988. Mutations affecting the tRNA-splicing endonuclease activity of Saccharomyces cerevisiae. Genetics 118: 609–617.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.