26
Views
9
CrossRef citations to date
0
Altmetric
Gene Expression

Vertebrate mRNAs with a 5′-Terminal Pyrimidine Tract Are Candidates for Translational Repression in Quiescent Cells: Characterization of the Translational cis-Regulatory Element

, , &
Pages 3822-3833 | Received 12 Jan 1994, Accepted 14 Mar 1994, Published online: 30 Mar 2023

REFERENCES

  • Agrawal, A. G., and L. H. Bowman. 1987. Transcriptional and translational regulation of ribosomal protein formation during mouse myoblast differentiation. J. Biol. Chem. 262: 4868–4875.
  • Aloni, R., D. Peleg, and O. Meyuhas. 1992. Selective translational control and nonspecific posttranscriptional regulation of ribosomal protein gene expression during development and regeneration of rat liver. Mol. Cell. Biol. 12: 2203–2212.
  • Amaldi, F., and P. Pierandrei-Amaldi. 1990. Translational regulation of the expression of ribosomal protein genes in Xenopus laevis. Enzyme 44: 93–105.
  • Auth, D., and G. Brawerman. 1992. A 33-kDa polypeptide with homology to the laminin receptor: component of translational machinery. Proc. Natl. Acad. Sci. USA 89: 4368–4372.
  • Avni, D., and O. Meyuhas. Unpublished results.
  • Backer, R. T., and P. G. Board. 1987. The human ubiquitin gene family: structure of a gene and pseudogenes from the Ub B subfamily. Nucleic Acids Res. 15: 443–463.
  • Backer, R. T., and P. G. Board. 1987. Nucleotide sequence of a human ubiquitin Ub B processed pseudogene. Nucleic Acids Res. 15: 4352.
  • Backer, R. T., and P. G. Board. 1991. The human ubiquitin-52 amino acid fusion protein gene shares several structural features with mammalian ribosomal protein genes. Nucleic Acids Res. 19: 1035–1040.
  • Beccari, E., and P. Mazzetti. 1987. The nucleotide sequence of the ribosomal protein L14 in Xenopus laevis. Nucleic Acids Res. 15: 1870–1872.
  • Beccari, E., P. Mazzetti, A. M. I. Miles, I. Bozzoni, P. Pierandrei-Amaldi, and F. Amaldi. 1986. Sequences coding for the ribosomal protein L14 in Xenopus laevis and Xenopus tropicalis; homologies in the 5′ untranslated region are shared with other r-protein mRNAs. Nucleic Acids Res. 14: 7633–7646.
  • Blochlinger, K., and H. Diggelmann. 1984. Hygromycin phosphotransferase as selectable marker for DNA transfer experiments with higher eucaryotic cells. Mol. Cell. Biol. 4: 2929–2931.
  • Cardinali, B., M. Di Cristiana, and P. Pierandrei-Amaldi. 1993. Interaction of proteins with the mRNA for ribosomal protein L1 in Xenopus: structural characterization of in vivo complexes and identification of proteins that bind in vitro to its 5′ UTR. Nucleic Acids Res. 21: 2301–2308.
  • Chan, Y.-L., J. Olvera, A. Gluck, and I. G. Wool. 1994. A leucine zipper-like motif and a bZIP-like element in rat ribosomal protein L13a. The identification of the turn- transplantation antigen P198. J. Biol. Chem. 269: 5589–5594.
  • Chan, Y.-L., and I. G. Wool. 1991. The structure of a gene containing introns and encoding rat ribosomal protein P2. Nucleic Acids Res. 19: 4895–4900.
  • Chien, Y.-H., and I. B. Dawid. 1984. Isolation and characterization of calmodulin genes from Xenopus laevis. Mol. Cell. Biol. 4: 507–513.
  • Chitpatima, S. T., S. Makrides, R. Bandyopadhyay, and G. Brawerman. 1988. Nucleotide sequence for a major messenger RNA for a 21 kilodalton polypeptide that is under translational control in mouse tumor cells. Nucleic Acids Res. 16: 2350.
  • Chung, S., and R. P. Perry. 1989. Importance of introns for expression of mouse ribosomal protein gene rpL32. Mol. Cell. Biol. 9: 2075–2082.
  • Colombo, P., and M. Fried. 1992. Functional elements of the ribosomal protein L7a (rpL7a) gene promoter region and their conservation between mammals and birds. Nucleic Acids Res. 20: 3367–3373.
  • DePhilip, R. M., W. A. Rudert, and I. Lieberman. 1980. Preferential stimulation of ribosomal protein synthesis by insulin and in the absence of ribosomal and messenger ribonucleic acid formation. Biochemistry 19: 1662–1669.
  • Dudov, K. P., and R. P. Perry. 1984. The gene family encoding the mouse ribosomal protein L32 contains a uniquely expressed intron-containing gene and an unmutated processed gene. Cell 37: 457–468.
  • Frederickson, R., A. Lazaris-Karatzas, and N. Sonenberg. 1990. The eukaryotic mRNA cap binding protein (eIF-4E); phosphorylation and regulation of cell growth, p. 497–509. In J. E. G. McCarthy, and M. F. Tuites (ed.), Post-transcriptional control of gene expression. Springer-Verlag, Berlin.
  • Garcia-Blanco, M. A., S. Jamison, and P. A. Sharp. 1989. Identification and purification of a 62,000-dalton protein that binds specifically to the polypyrimidine tract of introns. Genes Dev. 3: 1874–1886.
  • Gayathri Devi, K. R., Y. Chan, and I. W. Wool. 1989. The primary structure of rat ribosomal protein S4. Biochim. Biophys. Acta 1008: 258–262.
  • Geyer, P. K., O. Meyuhas, R. P. Perry, and L. F. Johnson. 1982. Regulation of ribosomal protein mRNA content and translation in growth-stimulated mouse fibroblasts. Mol. Cell. Biol. 2: 685–693.
  • Gil, A., P. A. Sharp, S. F. Jamison, and M. A. Garcia-Blanco. 1991. Characterization of cDNAs encoding the polypyrimidine tract-binding protein. Genes Dev. 5: 1224–1236.
  • Goossen, B., S. W. Caughman, J. B. Harford, R. D. Klausner, and M. W. Hentze. 1990. Translational repression by a complex between the iron responsive element of ferritin mRNA and its specific cytoplasmic binding protein is position-dependent in vivo. EMBO J. 9: 4127–4133.
  • Grosschedl, R., and D. Baltimore. 1985. Cell-type specificity of immunoglobulin gene expression is regulated by at least three DNA sequence elements. Cell 41: 885–897.
  • Hammond, M. L., and L. H. Bowman. 1988. Insulin stimulates the translation of ribosomal proteins and the transcription of rDNA in mouse myoblasts. J. Biol. Chem. 263: 17785–17791.
  • Hammond, M. L., W. Merrick, and L. H. Bowman. 1991. Sequences mediating the translation of mouse S16 ribosomal protein mRNA during myoblast differentiation and in vitro and possible control points for the in vitro translation. Genes Dev. 5: 1723–1736.
  • Hariharan, N., D. E. Kelley, and R. P. Perry. 1989. Equipotent mouse ribosomal protein promoters have a similar architecture that includes internal sequence elements. Genes Dev. 3: 1789–1800.
  • Hariharan, N., D. E. Kelley, and R. P. Perry. 1991. 8, a transcription factor which binds to downstream elements in several polymerase II promoters, is a functional versatile zinc-finger protein. Proc. Natl. Acad. Sci. USA 88: 9799–9803.
  • Hariharan, N., and R. P. Perry. 1989. A characterization of the elements comprising the promoter of the mouse ribosomal protein gene rpS16. Nucleic Acids Res. 17: 5323–5337.
  • Hariharan, N., and R. P. Perry. 1990. Functional dissection of a mouse ribosomal protein promoter: significance of the polypyrimidine initiator and an element in the TATA-box region. Proc. Natl. Acad. Sci. USA 87: 1526–1530.
  • Hellen, C. U. T., G. W. Witherell, M. Schmid, S. Hoon Shin, T. V. Pestova, A. Gill, and E. Wimmer. 1993. A cytoplasmic 57-kDa protein that is required for translation of picornavirus RNA by internal ribosomal entry is identical to the nuclear pyrimidine tract-binding protein. Proc. Natl. Acad. Sci. USA 90: 7642–7646.
  • Innis, M. A., and D. H. Gelfand. 1990. Optimization of PCRs, p. 3–12. In M. A. Innis, D. H. Gelfand, J. J. Sninsky, and T. J. Whites (ed.), PCR protocols. A guide to methods and applications. Academic Press, San Diego, Calif.
  • Jang, S. K., T. V. Pestova, C. U. T. Hellen, G. W. Witherell, and W. Wimmer. 1990. Cap-independent translation of picornavirus RNAs: structure and function of the internal ribosomal entry site. Enzyme 44: 292–309.
  • Kaspar, R. L., T. Kakegawa, H. Cranston, D. R. Morris, and M. W. White. 1992. A regulatory cis element and a specific binding factor involved in the mitogenic control of murine ribosomal protein L32 translation. J. Biol. Chem. 267: 508–514.
  • Kaspar, R. L., W. Rychlik, M. W. White, R. E. Rhoads, and D. R. Morris. 1990. Simultaneous cytoplasmic redistribution of ribosomal protein L32 mRNA and phosphorylation of eukaryotic initiation factor 4E after mitogenic stimulation of Swiss 3T3 cells. J. Biol. Chem. 265: 3619–3622.
  • Levy, S., D. Avni, N. Hariharan, R. P. Perry, and O. Meyuhas. 1991. Oligopyrimidine tract at the 5′ end of mammalian ribosomal protein mRNAs is required for their translational control. Proc. Natl. Acad. Sci. USA 88: 3319–3323.
  • Loreni, F. Unpublished results.
  • Loreni, F., and F. Amaldi. 1992. Translational regulation of ribosomal protein synthesis in Xenopus cultured cells: mRNA relocation between polysomes and RNP during nutritional shifts. Eur. J. Biochem. 205: 1027–1032.
  • Loreni, F., A. Francesconi, and F. Amaldi. 1993. Coordinate translational regulation in the synthesis of elongation factor la and ribosomal proteins in Xenopus laevis. Nucleic Acids Res. 21: 4721–4725.
  • Mariottini, P., and F. Amaldi. 1990. The 5′ untranslated region of mRNA for ribosomal protein S19 is involved in its translational regulation during Xenopus development. Mol. Cell. Biol. 10: 816–822.
  • Melton, D. W., D. S. Konecki, J. Bernard, and C. T. Caskey. 1984. Structure, expression, and mutation of the hypoxanthine phospho-ribosyltransferase gene. Proc. Natl. Acad. Sci. USA 81: 2147–2151.
  • Meyuhas, O., V. Baldin, G. Bouche, and F. Amalric. 1990. Glucocorticoids repress ribosome biosynthesis in lymphosarcoma cells by affecting gene expression at the level of transcription, posttranscription and translation. Biochim. Biophys. Acta 1049: 38–44.
  • Meyuhas, O., and A. Klein. 1990. The mouse ribosomal protein L7 gene. Its primary structure and functional analysis of the promoter region. J. Biol. Chem. 265: 11465–11473.
  • Meyuhas, O., and R. P. Perry. 1980. Construction and identification of cDNA clones for several mouse ribosomal proteins. Application for the study of r-protein gene expression. Gene 10: 113–127.
  • Meyuhas, O., E. A. ThompsonJr., and R. P. Perry. 1987. Glucocorticoids selectively inhibit translation of ribosomal protein mRNAs in P1798 lymphosarcoma cells. Mol. Cell. Biol. 7: 2691–2699.
  • Minty, A. J., M. Caravatti, B. Robert, A. Cohen, P. Daubas, A. Weydert, F. Gross, and M. E. Buckingham. 1981. Mouse actin messenger RNAs: construction and characterization of a recombinant plasmid molecule containing a complementary DNA transcript of mouse α-actin mRNA. J. Biol. Chem. 256: 1008–1014.
  • Ng, S.-Y., P. Gunning, R. Eddy, P. Ponte, J. Leavitt, T. Shows, and L. Kedes. 1985. Evolution of the functional human β-actin gene and its multi-pseudogene family: conservation of noncoding regions and chromosomal dispersion of pseudogenes. Mol. Cell. Biol. 5: 2720–2732.
  • Nudel, U., R. Zakut, M. Shani, S. Neuman, Z. Levy, and D. Yaffe. 1983. The nucleotide sequence of the rat cytoplasmic β-actin gene. Nucleic Acids Res. 11: 1759–1771.
  • Patel, R. C., and M. Jacobs-Lorena. 1992. Cis-acting sequences in the 5′ untranslated region of the ribosomal protein Al mRNA mediate its translational regulation during early embryogenesis of Drosophila. J. Biol. Chem. 267: 1159–1164.
  • Patton, J. G., S. A. Mayer, P. Tempst, and B. Nadal-Ginard. 1991. Characterization and molecular cloning of polypyrimidine tract-binding protein: a component of a complex necessary for pre-mRNA splicing. Genes Dev. 5: 1237–1251.
  • Perry, R. P., and O. Meyuhas. 1990. Translational control of ribosomal protein production in mammalian cells. Enzyme 44: 83–92.
  • Rao, T. R., and L. I. Slobin. 1987. Regulation of the utilization of mRNA for eucaryotic elongation factor Tu in Friend erythroleu-kemia cells. Mol. Cell. Biol. 7: 687–697.
  • Rich, B. E., and J. A. Steitz. 1987. Human acidic ribosomal phosphoprotein P0, PI, and P2: analysis of cDNA clones, in vitro synthesis, and assembly. Mol. Cell. Biol. 7: 4065–4074.
  • Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Sanger, F., S. Nicklen, and A. R. Coulson. 1977. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74: 5463–5467.
  • Sarkar, G., and S. S. Sommer. 1991. The “megaprimer” method of site-directed mutagenesis. BioTechniques 8: 404–407.
  • Selden, R. F., M. K. B. Howie, M. E. Rowe, H. M. Goodman, and D. D. Moore. 1986. Human growth hormone as a reporter gene in regulation studies employing transient gene transfection. Mol. Cell. Biol. 6: 3173–3179.
  • Shama, S., D. Avni, R. M. Frederickson, N. Sonenberg, and O. Meyuhas. Overexpression of initiation factor eIF-4E does not relieve the translational repression of ribosomal protein mRNAs in quiescent cells. Submitted for publication.
  • Sherman, L., N. Dafni, J. Lieman-Hurwitz, and Y. Groner. 1983. Nucleotide sequence and expression of human chromosome 21-encoded superoxide dismutase mRNA. Proc. Natl. Acad. Sci. USA 80: 5465–5468.
  • Sibille, C., P. Chomez, C. Wildmann, A. Van Pel, E. De Plaen, J. L. Maryanski, V. de Bergeyck, and T. Boon. 1990. Structure of the gene of turn transplantation antigen P198: a point mutation generates a new antigenic peptide. J. Exp. Med. 172: 35–45.
  • Sonenberg, N., and K. Meerovitch. 1990. Translation of poliovirus mRNA. Enzyme 44: 278–291.
  • Spadari, S., F. Sala, and G. Pedrali-Noy. 1982. Aphidicolin: a specific inhibitor of nuclear replication in eukaryotes. Trends Biochem. Sci. 7: 29–32.
  • Steel, L. F., and A. Jacobson. 1991. Sequence elements that affect mRNA translational activity in developing Dictyostelium cells. Dev. Genet. 12: 98–103.
  • Steel, L. F., A. Smyth, and A. Jacobson. 1987. Nucleotide sequence and characterization of the transcript of a Dictyostelium ribosomal protein gene. Nucleic Acids Res. 15: 10285–10298.
  • Stewart, M. J., and R. Denell. 1993. Mutations in Drosophila gene encoding ribosomal protein S6 cause tissue overgrowth. Mol. Cell. Biol. 13: 2524–2535.
  • Sugawara, A., K. Shiga, S. Takasawa, H. Yonekura, H. Yamamoto, and H. Okamoto. 1991. Sequence of the chicken rig gene encoding ribosomal protein SI5. Gene 108: 313–314.
  • Theil, E. C. 1990. Regulation of ferritin and transferrin receptor mRNAs. J. Biol. Chem. 265: 4771–4774.
  • Toku, S., and T. Tanaka. 1992. The primary structure of chicken ribosomal protein L37a. Biochim. Biophys. Acta 1132: 88–90.
  • Uetsuki, T., A. Naito, S. Nagata, and Y. Kaziro. 1989. Isolation and characterization of the human chromosomal gene for polypeptide chain elongation factor-la. J. Biol. Chem. 264: 5791–5798.
  • Wagner, M., and R. P. Perry. 1985. Characterization of the multigene family encoding the mouse SI6 ribosomal protein: strategy for distinguishing an expressed gene from its processed pseudogene counterparts by analysis of total genomic DNA. Mol. Cell. Biol. 5: 3560–3576.
  • Wiborg, O., M. S. Pederson, A. Wind, L. E. Berglund, K. A. Marcker, and J. Vuust. 1985. The human ubiquitin multigene family: some genes contain multiple directly repeated ubiquitin coding sequences. EMBO J. 4: 755–759.
  • Wiedemann, L. M., and R. P. Perry. 1984. Characterization of the expressed gene and several processed pseudogenes for the mouse ribosomal protein L30 gene family. Mol. Cell. Biol. 4: 2518–2528.
  • Wigler, M., R. Sweet, G. K. Sim, B. Wold, A. Pellicer, E. Lacy, T. Maniatis, S. Silverstein, and R. Axel. 1979. Transformation of mammalian cells with genes from procaryotes and eucaryotes. Cell 17: 777–785.
  • Wormington, W. M. 1989. Developmental expression and 5S rRNA-binding activity of Xenopus laevis ribosomal protein L5. Mol. Cell. Biol. 9: 5281–5288.
  • Yenofsky, R., S. Careghini, A. Krowczynska, and G. Brawerman. 1983. Regulation of mRNA utilization in mouse erythroleukemia cells induced to differentiate by exposure to dimethyl sulfoxide. Mol. Cell. Biol. 3: 1197–1203.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.