26
Views
26
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

Multiple Mechanisms Provide Rapid and Stringent Glucose Repression of GAL Gene Expression in Saccharomyces cerevisiae

, &
Pages 3834-3841 | Received 27 Jan 1994, Accepted 15 Mar 1994, Published online: 30 Mar 2023

REFERENCES

  • Adams, B. G. 1972. Induction of galactokinase in Saccharomyces cerevisiae: kinetics of induction and glucose effects. J. Bacteriol. 111: 308–315.
  • Bajwa, W., T. Torchia, and J. Hopper. 1988. Yeast regulatory gene GAL3: carbon regulation; UASGal elements in common with GAL1, GAL2, GAL7, GAL10, GAL80, and MEL1; encoded protein strikingly similar to yeast and Escherichia coli galactoki-nases. Mol. Cell. Biol. 8: 3439–3447.
  • Bhat, P. J., and J. E. Hopper. 1992. Overproduction of the GAL1 or GAL3 proteins causes galactose-independent activation of the GAL4 protein: evidence for a new model of induction for the yeast GAL/MEL regulon. Mol. Cell. Biol. 12: 2701–2707.
  • Bram, R. J., N. F. Lue, and R. D. Kornberg. 1986. A GAL family of upstream activating sequences in yeast: roles in both induction and repression of transcription. EMBO J. 5: 603–608.
  • Celenza, J. L., and M. Carlson. 1986. A yeast gene that is essential for release from glucose repression encodes a protein kinase. Science 233: 1175–1180.
  • Elder, R. T., E. Y. Loh, and R. W. Davis. 1983. RNA from the yeast transposable element Tyl has both ends in the direct repeats, a structure similar to retrovirus RNA. Proc. Natl. Acad. Sci. USA 80: 2432–2436.
  • Erickson, J. R., and M. Johnston. 1993. Genetic and molecular characterization of GAL83: its interaction and similarities with other genes involved in glucose repression in Saccharomyces cerevisiae. Genetics 135: 655–664.
  • Erickson, J. R., and M. Johnston. Suppressors reveal two classes of glucose repression genes in the yeast Saccharomyces cerevisiae. Genetics, in press.
  • Finley, R. L.Jr., S. Chen, J. Ma, P. Byrne, and R. W. West, Jr. 1990. Opposing regulatory functions of positive and negative elements in UASG control transcription of the yeast GAL genes. Mol. Cell. Biol. 10: 5663–5670.
  • Flick, J. S., and M. Johnston. 1990. Two systems of glucose repression of the GAL1 promoter in Saccharomyces cerevisiae. Mol. Cell. Biol. 10: 4757–4769.
  • Flick, J. S., and M. Johnston. 1992. Analysis of URSG-mediated glucose repression of the GAL1 promoter of Saccharomyces cerevisiae. Genetics 130: 295–304.
  • Giniger, E., and M. Ptashne. 1988. Cooperative DNA binding of the yeast transcriptional activator GAL4. Proc. Natl. Acad. Sci. USA 85: 382–386.
  • Griggs, D. W., and M. Johnston. 1991. Regulated expression of the GAL4 activator gene in yeast provides a sensitive genetic switch for glucose repression. Proc. Natl. Acad. Sci. USA 88: 8597–8601.
  • Herrick, D., R. Parker, and A. Jacobsen. 1990. Identification and comparison of stable and unstable mRNAs lin Saccharomyces cerevisiae. Mol. Cell. Biol. 10: 2269–2284.
  • Johnston, H. M., and R. W. Davis. 1984. Sequences that regulate the divergent GAL1-GAL10 promoter in Saccharomyces cerevisiae. Mol. Cell. Biol. 4: 1440–1448.
  • Johnston, M. 1987. A model fungal regulatory mechanism: the GAL genes of Saccharomyces cerevisiae. Microbiol. Rev. 51: 458–476.
  • Johnston, M., and M. Carlson. 1993. Regulation of carbon and phosphate utilization, p. 193–281. In J. Broach, E. W. Jones, and J. Pringle (ed.), The biology of the yeast Saccharomyces, vol. 2. Cold Spring Harbor Press, Cold Spring Harbor, N.Y.
  • Johnston, S. A., J. M. SalmeronJr., and S. S. Dincher. 1987. Interaction of positive and negative regulatory proteins in the galactose regulon of yeast. Cell 50: 143–146.
  • Keegan, L., G. Gill, and M. Ptashne. 1986. Separation of DNA binding from the transcription-activating function of a eukaryotic regulatory protein. Science 231: 699–704.
  • Lamphier, M., and M. Ptashne. 1992. Multiple mechanisms mediate glucose repression of the yeast GAL1 gene. Proc. Natl. Acad. Sci. USA 89: 5922–5926.
  • Ma, J., and Ptashne, M. 1987. The carboxy-terminal 30 amino acids of GAL4 are recognized by GAL80. Cell 50: 137–142.
  • Matern, H., and H. Holzer. 1977. Catabolite inactivation of the galactose uptake system in yeast. J. Biol. Chem. 252: 6399–6402.
  • Mylin, L. M., J. P. Bhat, and J. E. Hopper. 1988. Regulated phosphorylation and dephosphorylation of GAL4, a transcriptional activator. Genes Dev. 3: 1157–1165.
  • Nehlin, J. O., M. Carlberg, and H. Ronne. 1991. Control of yeast GAL genes by MIG1 repressor: a transcriptional cascade in the glucose response. EMBO J. 10: 3373–3377.
  • Nehlin, J. O., M. Carlberg, and H. Ronne. 1992. Yeast SKO1 gene encodes a bZIP protein that binds to the CRE motif and acts as a repressor of transcription. Nucleic Acids Res. 20: 5271–5278.
  • Nehlin, J. O., and H. Ronne. 1990. Yeast MIG1 repressor is related to the mammalian early growth response and Wilms’ tumour finger proteins. EMBO J. 9: 2891.
  • Neigeborn, L., and M. Carlson. 1984. Genes affecting the regulation of SUC2 gene expression by glucose repression in Saccharomyces cerevisiae. Genetics 108: 845–858.
  • Parthun, M. R., and J. A. Jaehning. 1992. A transcriptionally active form of GAL4 is phosphorylated and associated with GAL80. Mol. Cell. Biol. 12: 4981–4987.
  • Ramos, J., and V. P. Cirillo. 1989. Role of cyclic-AMP-dependent protein kinase in catabolite inactivation of the glucose and galactose transporters in Saccharomyces cerevisiae. J. Bacteriol. 171: 3545–3548.
  • Sadowski, I., D. Niedbala, K. Wood, and M. Ptashne. 1991. GAL4 is phosphorylated as a consequence of transcriptional activation. Proc. Natl. Acad. Sci. USA 88: 10510.
  • Schiiller, H.-J., and K.-D. Entian. 1987. Isolation and expression analysis of two yeast regulatory genes involved in the derepression of glucose-repressible enzymes. Mol. Gen. Genet. 209: 366–373.
  • Schiiller, H.-J., and K.-D. Entian. 1991. Extragenic suppressors of yeast glucose derepression mutants leading to constitutive synthesis of several glucose-repressible enzymes. J. Bacteriol. 173: 2045–2052.
  • Selleck, S., and J. Majors. 1987. In vivo DNA-binding properties of a yeast transcription activator protein. Mol. Cell. Biol. 7: 3260–3267.
  • Sikorski, R. S., and P. Hieter. 1989. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122: 19–27.
  • St. John, T. P., and R. W. Davis. 1981. The organization and transcription of the galactose gene cluster Saccharomyces. J. Mol. Biol. 152: 285–315.
  • Stone, G., and I. Sadowski. 1993. GAL4 is regulated by a glucose-responsive functional domain. EMBO J. 12: 1375–1385.
  • Tschopp, J., S. Emr, C. Field, and R. Schekman. 1986. GAL2 codes for a membrane-bound subunit of the galactose permease in Saccharomyces cerevisiae. J. Bacteriol. 166: 313–318.
  • Vallier, L. G., and M. Carlson. Synergistic interactions of mig1 and ssn mutations in glucose repression. Genetics, in press.
  • Yocum, R. R., S. Hanley, R. WestJr., and M. Ptashne. 1984. Use of lacZ fusions to delimit regulatory elements of the inducible divergent GAL1-GAL10 promoter in Saccharomyces cerevisiae. Mol. Cell. Biol. 4: 1985–1998.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.