2
Views
17
CrossRef citations to date
0
Altmetric
Gene Expression

The Insulin Gene Contains Multiple Transcriptional Elements That Respond to Glucose

&
Pages 4067-4075 | Received 09 Nov 1993, Accepted 08 Mar 1994, Published online: 30 Mar 2023

REFERENCES

  • Aronheim, A., H. Ohlsson, C. W. Park, T. Edlund, and M. D. Walker. 1991. Distribution and characterization of helix-loop-helix enhancer-binding proteins from pancreatic p-cells and lymphocytes. Nucleic Acids Res. 19: 3893–3899.
  • Blanar, M. Personal communication.
  • Boam, D., A. Clark, and K. Docherty. 1990. Positive and negative regulation of the insulin gene by multiple trans-acting factors. J. Biol. Chem. 265: 8285–8296.
  • Church, G. M., A. Ephrussi, W. Gilbert, and S. Tonegawa. 1985. Cell-type-specific contacts to immunoglobulin enhancers in nuclei. Nature (London) 313: 798–801.
  • Cordle, S. R., E. Henderson, H. Masuoka, P. A. Weil, and R. Stein. 1991. Pancreatic β-cell-type-specific transcription of the insulin gene is mediated by basic helix-loop-helix DNA-binding proteins. Mol. Cell. Biol. 11: 1734–1738.
  • Crowe, D. T., and M.-J. Tsai. 1989. Mutagenesis of the rat insulin II5′-flanking region defines sequences important for expression in HIT cells. Mol. Cell. Biol. 9: 1784–1789.
  • Decaux, J.-F., B. Antoine, and A. Kahn. 1989. Regulation of the expression of the L-type pyruvate kinase gene in adult rat hepa-tocytes in primary culture. J. Biol. Chem. 264: 11584–11590.
  • Dhar, R., W. L. McClements, L. W. Enquist, and G. F. Van de Woude. 1980. Nucleotide sequences of integrated Moloney sarcoma provirus long terminal repeats and their host and viral junctions. Proc. Natl. Acad. Sci. USA 77: 3937–3941.
  • Dignam, J. D., R. M. Lebowitz, and R. G. Roeder. 1983. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 11: 1475–1489.
  • Edlund, T., M. D. Walker, P. J. Barr, and W. J. Rutter. 1985. Cell-specific expression of the rat insulin gene: evidence for the role of two distinct 5′ flanking sequences. Science 230: 912–916.
  • Emens, L. A., D. W. Landers, and L. G. Moss. 1992. Hepatocyte nuclear factor la is expressed in a hamster insulinoma line and transactivates the rat insulin I gene. Proc. Natl. Acad. Sci. USA 89: 7300–7304.
  • Ephrussi, A., G. Church, S. Tonegawa, and W. Gilbert. 1985. B lineage-specific interactions of an immunoglobulin enhancer with cellular factors in vivo. Science 227: 134–140.
  • Freid, M., and D. M. Carothers. 1981. Equilibria and kinetics of lac repressor-operator interactions by polyacrylamide gel electrophoresis. Nucleic Acids Res. 9: 3047–3060.
  • Garner, M. M., and A. Revzin. 1981. A gel electrophoresis method for quantifying the binding of proteins to specific DNA regions: application to components of the Escherichia coli lactose operon regulating system. Nucleic Acids Res. 9: 3047–3060.
  • German, M. 1993. Glucose sensing in pancreatic islet beta cells: the key role of glucokinase and the glycolytic intermediates. Proc. Natl. Acad. Sci. USA 90: 1781–1785.
  • German, M. S., M. A. Blanar, C. Nelson, L. G. Moss, and W. J. Rutter. 1991. Two related helix-loop-helix proteins participate in separate cell-specific complexes that bind to the insulin enhancer. Mol. Endocrinol. 5: 292–299.
  • German, M. S., and L. G. Moss. Unpublished data.
  • German, M. S., L. G. Moss, and W. J. Rutter. 1990. Regulation of insulin gene expression by glucose and calcium in transfected primary islet cultures. J. Biol. Chem. 265: 22063–22066.
  • German, M. S., L. G. Moss, J. Wang, and W. J. Rutter. 1992. The insulin and islet amyloid polypeptide genes contain similar cell-specific promoter elements that bind identical 0-cell nuclear complexes. Mol. Cell. Biol. 12: 1777–1788.
  • German, M. S., and J. Wang. Unpublished data.
  • German, M. S., J. Wang, R. B. Chadwick, and W. J. Rutter. 1992. Synergistic activation of the insulin gene by a LIM-homeodomain protein and a basic helix-loop-helix protein: building a functional insulin minienhancer complex. Genes Dev. 6: 2165–2176.
  • Gorman, C. M., L. F. Moffat, and B. H. Howard. 1982. Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells. Mol. Cell. Biol. 2: 1044–1051.
  • Hanahan, D. 1985. Heritable formation of pancreatic (S-cell tumors in transgenic mice expressing recombinant insulin/simian virus 40 oncogenes. Nature (London) 315: 115–122.
  • Huang, M. T., and C. M. Gorman. 1990. The simian virus 40 small-t intron, present in many common expression vectors, leads to aberrant splicing. Mol. Cell. Biol. 10: 1805–1810.
  • Hwung, Y.-P., Y.-Z. Gu, and M.-J. Tsai. 1990. Cooperativity of sequence elements mediates tissue specificity of the rat insulin II gene. Mol. Cell. Biol. 10: 1784–1788.
  • Inagaki, N., T. Maekawa, T. Sudo, S. Ishii, Y. Seino, and H. Imura. 1992. c-jun represses the human insulin promoter activity that depends on multiple cAMP response elements. Proc. Natl. Acad. Sci. USA 89: 1045–1049.
  • Karlsson, O., T. Edlund, J. B. Moss, W. J. Rutter, and M. D. Walker. 1987. A mutational analysis of the insulin gene transcription control region: expression in β-cells is dependent on two related sequences within the enhancer. Proc. Natl. Acad. Sci. USA 84: 8819–8823.
  • Karlsson, O., S. Thor, T. Norberg, H. Ohlsson, and T. Edlund. 1990. Insulin gene enhancer binding protein isl-1 is a member of a novel class of proteins containing both a homeo- and a cys-his domain. Nature (London) 344: 879–882.
  • Karlsson, O., M. D. Walker, W. J. Rutter, and T. Edlund. 1989. Individual protein-binding domains of the insulin gene enhancer positively activate β-cell-specific transcription. Mol. Cell. Biol. 9: 823–827.
  • Kennedy, G. C., and W. J. Rutter. 1992. Pur-1, a zinc-finger protein that binds to purine-rich sequences, transactivates an insulin promoter in heterologous cells. Proc. Natl. Acad. Sci. USA 89: 11498–11502.
  • Liu, Z., K. Thompson, and H. Towle. 1993. Carbohydrate regulation of the rat L-type pyruvate kinase gene requires two nuclear factors: LF-A1 and a member of the c-myc family. J. Biol. Chem. 268: 12787–12795.
  • Magnuson, M. A., P. G. Quinn, and D. K. Granner. 1987. Multihormonal regulation of phosphoenolpyruvate carboxykinase-chloramphenicol acetyl transferase fusion genes. J. Biol. Chem. 262: 14917–14920.
  • Melloul, D., Y. Ben-Neriah, and E. Cerasi. 1993. Glucose modulates the binding of an islet-specific factor to a conserved sequence within the rat I and the human insulin promoters. Proc. Natl. Acad. Sci. USA 90: 3865–3869.
  • Moss, L. G., J. B. Moss, and W. J. Rutter. 1988. Systematic binding analysis of the insulin gene transcription control region: insulin and immunoglobulin enhancers utilize similar transactivators. Mol. Cell. Biol. 8: 2620–2627.
  • Murre, C., P. S. McCaw, and D. Baltimore. 1989. A new DNA binding and dimerization motif in immunoglobulin enhancer binding, daughterless, MyoD, and myc proteins. Cell 56: 777–783.
  • Nelson, C., L.-P. Shen, A. Meister, E. Fodor, and W. J. Rutter. 1990. Pan: a transcriptional regulator that binds chymotrypsin, insulin, and AP-4 enhancer motifs. Genes Dev. 4: 1035–1043.
  • Nielsen, D. A., M. Welsh, M. J. Casadaban, and D. F. Steiner. 1985. Control of insulin gene expression in pancreatic (3-cells and in an insulin-producing cell line, RIN-5F cells. J. Biol. Chem. 260: 13585–13589.
  • Nishi, M., T. Sanke, S. Seino, R. L. Eddy, Y. S. Fan, M. G. Byers, T. B. Shows, G. I. Bell, and D. F. Steiner. 1989. Human islet amyloid polypeptide gene: complete nucleotide sequence, chromosomal location, and evolutionary history. Mol. Endocrinol. 3: 1775–1781.
  • Ohlsson, H., O. Karlson, and T. Edlund. 1988. A β-cell-specific protein binds to the two major regulatory sequences of the insulin enhancer. Proc. Natl. Acad. Sci. USA 85: 4228–4231.
  • Ohlsson, H., S. Thor, and T. Edlund. 1991. Novel insulin promoter- and enhancer-binding proteins that discriminate between pancreatic α- and β-cells. Mol. Endocrinol. 5: 897–904.
  • Philippe, J., and M. Missotten. 1990. Functional characterization of a cAMP-responsive element of the rat insulin I gene. J. Biol. Chem. 265: 1465–1469.
  • Sheih, S., and M. Tsai. 1991. Cell-specific and ubiquitous factors are responsible for the enhancer activity of the rat insulin II gene. J. Biol. Chem. 266: 16708–16714.
  • Shih, H.-M., and H. C. Towle. 1992. Definition of the carbohydrate response element of the rat S14 gene. Evidence for a common factor required for carbohydrate regulation of hepatic genes. J. Biol. Chem. 267: 13222–13228.
  • Walker, M. D., T. Edlund, A. M. Boulet, and W. J. Rutter. 1983. Cell-specific expression controlled by the 5′ flanking regions of the insulin and chymotrypsin genes. Nature (London) 306: 557–581.
  • Walker, M. D., C. W. Park, A. Rosen, and A. Aronheim. 1990. A cDNA from a mouse pancreatic β-cell encoding a putative transcription factor of the insulin gene. Nucleic Acids Res. 18: 1159–1166.
  • Welsh, M., J. Brunstedt, and C. Hellerstrom. 1986. Effects of D-glucose, L-leucine and 2-ketoisocaproate on insulin mRNA levels in mouse pancreatic islets. Diabetes 35: 228–231.
  • Welsh, M., D. A. Nielsen, A. J. MacKrell, and D. F. Steiner. 1985. Control of insulin gene expression in pancreatic (3-cells and in an insulin-producing cell line, RIN-5F cells. J. Biol. Chem. 260: 13590–13594.
  • Whelan, J., S. R. Cordle, E. Henderson, P. A. Weil, and R. Stein. 1990. Identification of a pancreatic 0-cell insulin gene transcription factor that binds to and appears to activate cell-type-specific expression: its possible relationship to other cellular factors that bind to a common insulin gene sequence. Mol. Cell. Biol. 10: 1564–1572.
  • Whelan, J., D. Poon, P. A. Weil, and R. Stein. 1989. Pancreatic β-cell-type-specific expression of the rat insulin II gene is controlled by positive and negative cellular transcription elements. Mol. Cell. Biol. 9: 3253–3259.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.