8
Views
1
CrossRef citations to date
0
Altmetric
DNA Dynamics and Chromosome Structure

Mutational Analysis of ERCC3, Which Is Involved in DNA Repair and Transcription Initiation: Identification of Domains Essential for the DNA Repair Function

, , , , , , & show all
Pages 4126-4134 | Received 05 Jan 1994, Accepted 14 Mar 1994, Published online: 30 Mar 2023

REFERENCES

  • Azzaria, M., E. Schurr, and P. Gros. 1989. Discrete mutations introduced in the predicted nucleotide-binding sites of the mdr1 gene abolish its ability to confer multidrug resistance. Mol. Cell. Biol. 9: 5289–5297.
  • Bailly, V., P. Sung, L. Prakash, and S. Prakash. 1991. DNA RNA helicase activity of RAD3 protein of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 88: 9712–9716.
  • Bootsma, D., and J. H. J. Hoeijmakers. 1993. DNA repair. Engagement with transcription. Nature (London) 363: 114–115.
  • Chao, K., and T. M. Lohman. 1990. DNA and nucleotide-induced conformational changes in the Escherichia coli Rep and helicase II (UvrD) proteins. J. Biol. Chem. 265: 1067–1076.
  • Cleaver, J. E., and K. H. Kraemer. 1989. Xeroderma pigmentosum, p. 2949–2971. In C. R. Scriver, A. L. Beaudet, W. S. Sly, and D. Valle (ed.), The metabolic basis of inherited disease. McGraw-Hill, New York.
  • Feaver, W. J., J. Q. Svejstrup, L. Bardwell, A. J. Bardwell, S. Buratowski, K. D. Gulyas, T. F. Donahue, E. C. Friedberg, and R. D. Romberg. 1993. Dual roles of a multiprotein complex from S. cerevisiae in transcription and DNA repair. Cell 75: 1379–1387.
  • Fischer, L., M. Gerard, C. Chalut, Y. Lutz, S. Humbert, M. Kanno, P. Chambon, and J.-M. Egly. 1992. Cloning of the 62-kilodalton component of basic transcription factor BTF2. Science 257: 1392–1395.
  • Flejter, W. L., L. D. McDaniel, D. Johns, E. C. Friedberg, and R. A. Schultz. 1992. Correction of xeroderma pigmentosum complementation group D mutant cell phenotypes by chromosome and gene transfer: involvement of the human ERCC2 DNA repair gene. Proc. Natl. Acad. Sci. USA 89: 261–265.
  • Fry, D. C., S. A. Kuby, and A. S. Mildvan. 1986. ATP-binding site of adenylate kinase: mechanistic implications of its homology with ras-encoded p21, Fl-ATPase, and other nucleotide-binding proteins. Proc. Natl. Acad. Sci. USA 83: 907–911.
  • Gorbalenya, A. E., E. V. Koonin, A. P. Donchenko, and V. M. Blinov. 1989. Two related superfamilies of putative helicases involved in replication, recombination, repair and expression of DNA and RNA genomes. Nucleic Acids Res. 17: 4713–4730.
  • Grossman, L., and S. Thiagalingam. 1993. Nucleotide excision repair, a tracking mechanism in search of damage. J. Biol. Chem. 268: 16871–16874.
  • Gulyas, K. D., and T. F. Donahue. 1992. SSL2, a suppressor of a stem-loop mutation in the HIS4 leader encodes the yeast homolog of human ERCC-3. Cell 69: 1031–1042.
  • Guzder, S. N., H. Qiu, C. H. Sommers, P. Sung, L. Prakash, and S. Prakash. 1994. DNA repair gene RAD3 of S. cerevisiae is essential for transcription by RNA polymerase II. Nature (London) 367: 91–94.
  • Hoeijmakers, J. H. J. 1993. Nucleotide excision repair. II. From yeast to mammals. Trends Genet. 9: 211–217.
  • Hoeijmakers, J. H. J. 1993. Nucleotide excision repair. I. From E. coli to yeast. Trends Genet. 9: 173–177.
  • Kemp, B. E., and R. B. Pearson. 1990. Protein kinase recognition sequence motifs. Trends Biochem. Sci. 15: 342–346.
  • Klein, B., A. Pastink, H. Odijk, A. Westerveld, and A. J. van der Eb. 1990. Transformation and immortalization of diploid xeroderma pigmentosum fibroblasts. Exp. Cell Res. 191: 256–262.
  • Koken, M. H. M., C. Vreeken, S. A. Bol, N. C. Cheng, I. Jaspers Dekker, J. H. J. Hoeijmakers, J. C. Eeken, G. Weeda, and A. Pastink. 1992. Cloning and characterization of the Drosophila homolog of the xeroderma pigmentosum complementation-group B correcting gene, ERCC3. Nucleic Acids Res. 20: 5541–5548.
  • Kunkel, T. A., J. D. Roberts, and R. A. Zakour. 1987. Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol. 154: 367–382.
  • Legerski, R., and C. Peterson. 1992. Expression cloning of a human DNA repair gene involved in xeroderma pigmentosum group C. Nature (London) 359: 70–73.
  • Lin, J. J., and A. Sancar. 1992. (A)BC excinuclease: the Escherichia coli nucleotide excision repair enzyme. Mol. Microbiol. 6: 2219–2224.
  • Linder, P., P. F. Lasko, M. Ashburner, P. Leroy, P. J. Nielsen, K. Nishi, J. Schnier, and P. P. Slonimski. 1989. Birth of the DEAD box. Nature (London) 337: 121–122.
  • Lu, H., L. Zawel, L. Fisher, J.-M. Egly, and D. Reinberg. 1992. Human general transcription factor IIH phosphorylates the C-terminal domain of RNA polymerase II. Nature (London) 358: 641–645.
  • MacArthur, H., and G. Walter. 1984. Monoclonal antibodies specific for the carboxy terminus of simian virus 40 large T antigen. J. Virol. 52: 483–491.
  • Mounkes, L. C., R. S. Jones, B. C. Liang, W. Gelbart, and M. T. Fuller. 1992. A Drosophila model for xeroderma pigmentosum and Cockayne's syndrome: haywire encodes the fly homolog of ERCC3, a human excision repair gene. Cell 71: 925–937.
  • Nance, M. A., and S. A. Berry. 1992. Cockayne syndrome: review of 140 cases. Am. J. Med. Genet. 42: 68–84.
  • Naumovski, L., and E. C. Friedberg. 1986. Analysis of the essential and excision repair functions of the RAD3 gene of Saccharomyces cerevisiae by mutagenesis. Mol. Cell. Biol. 6: 1218–1227.
  • O'Donovan, A., and R. D. Wood. 1993. Identical defects in DNA repair in xeroderma pigmentosum group G and rodent ERCC group 5. Nature (London) 363: 185–188.
  • Park, E., S. N. Guzder, M. H. M. Koken, I. Jaspers Dekker, G. Weeda, J. H. J. Hoeijmakers, S. Prakash, and L. Prakash. 1992. RAD25 (SSL2), the yeast homolog of the human xeroderma pigmentosum group B DNA repair gene, is essential for viability. Proc. Natl. Acad. Sci. USA 89: 11416–11420.
  • Pause, A., and N. Sonenberg. 1992. Mutational analysis of a DEAD box RNA helicase: the mammalian translation initiation factor eIF-4A. EMBO J. 11: 2643–2654.
  • Peterson, M. G., and R. Tjian. 1992. Transcription. The tell-tail trigger. Nature (London) 358: 620–621.
  • Qiu, H., E. Park, L. Prakash, and S. Prakash. 1993. The Saccharomyces cerevisiae DNA repair gene RAD25 is required for transcription by RNA polymerase II. Genes Dev. 7: 2161–2171.
  • Reinstein, J., I. Schlichting, and A. Wittinghofer. 1990. Structurally and catalytically important residues in the phosphate binding loop of adenylate kinase of Escherichia coli. Biochemistry 29: 7451–7459.
  • Saraste, M., P. R. Sibbald, and A. Wittinghofer. 1990. The P-loop—a common motif in ATP- and GTP-binding proteins. Trends Biochem. Sci. 15: 430–434.
  • Schaeffer, L., V. Moncollin, R. Roy, A. Staub, M. Mezzina, A. Sarazin, G. Weeda, J. H. J. Hoeijmakers, and J.-M. Egly. The ERCC2/DNA repair protein is associated with the class II BTF2/ TFIIH transcription factor. EMBO J., in press.
  • Schaeffer, L., R. Roy, S. Humbert, V. Moncollin, W. Vermeulen, J. H. J. Hoeijmakers, P. Chambon, and J.-M. Egly. 1993. DNA repair helicase: a component of BTF2 (TFIIH) basic transcription factor. Science 260: 58–63.
  • Scherly, D., T. Nouspikel, J. Corlet, C. Ucla, A. Bairoch, and S. G. Clarkson. 1993. Complementation of the DNA repair defect in xeroderma pigmentosum group G cells by a human cDNA related to yeast RAD2. Nature (London) 363: 182–185.
  • Seeley, T. W., and L. Grossman. 1989. Mutations in the Escherichia coli UvrB ATPase motif compromise excision repair capacity. Proc. Natl. Acad. Sci. USA 86: 6577–6581.
  • Selby, C. P., and A. Sancar. 1993. Molecular mechanism of transcription-repair coupling. Science 260: 53–58.
  • Smith, D. B., and K. S. Johnson. 1988. Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione 5-transferase. Gene 67: 31–40.
  • Story, R. M., and T. A. Steitz. 1992. Structure of the recA protein-ADP complex. Nature (London) 355: 374–376.
  • Sung, P., V. Bailly, C. Weber, L. H. Thompson, L. Prakash, and S. Prakash. 1993. Human xeroderma pigmentosum group D gene encodes a DNA helicase. Nature (London) 365: 852–855.
  • Sung, P., D. Higgins, L. Prakash, and S. Prakash. 1988. Mutation of lysine-48 to arginine in the yeast RAD3 protein abolishes its ATPase and DNA helicase activities but not the ability to bind ATP. EMBO J. 7: 3263–3269.
  • Tanaka, K., N. Miura, I. Satokata, I. Miyamoto, M. C. Yoshida, Y. Satoh, S. Kondo, A. Yasui, H. Okayama, and Y. Okada. 1990. Analysis of a human DNA excision repair gene involved in group A xeroderma pigmentosum and containing a zinc-finger domain. Nature (London) 348: 73–76.
  • Tian, G. C., H. G. Yan, R. T. Jiang, F. Kishi, A. Nakazawa, and M. D. Tsai. 1990. Mechanism of adenylate kinase. Are the essential lysines essential? Biochemistry 29: 4296–4304.
  • Troelstra, C., A. van Gool, J. de Wit, W. Vermeulen, D. Bootsma, and J. H. J. Hoeijmakers. 1992. ERCC6, a member of a subfamily of putative helicases, is involved in Cockayne's syndrome and preferential repair of active genes. Cell 71: 939–953.
  • van der Eb, A. J., and F. L. Graham. 1980. Assay of transforming activity of tumor virus DNA. Methods Enzymol. 65: 826–839.
  • van Duin, M., J. de Wit, H. Odijk, A. Westerveld, A. Yasui, M. H. M. Koken, J. H. J. Hoeijmakers, and D. Bootsma. 1986. Molecular characterization of the human excision repair gene ERCC-1: cDNA cloning and amino acid homology with the yeast DNA repair gene RADIO. Cell 44: 913–923.
  • Vermeulen, W., M. Stefanini, S. Giliani, J. H. J. Hoeijmakers, and D. Bootsma. 1991. Xeroderma pigmentosum complementation group H falls into complementation group D. Mutat. Res. 255: 201–208.
  • Walker, J. E., M. Saraste, M. J. Runswick, and N. J. Gay. 1982. Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J. 1: 945–951.
  • Wang, J., and L. Grossman. 1993. Mutations in the helix-turn-helix motif of the Escherichia coli UvrA protein eliminate its specificity for UV-damaged DNA. J. Biol. Chem. 268: 5323–5331.
  • Weber, C. A., E. P. Salazar, S. A. Stewart, and L. H. Thompson. 1990. ERCC2: cDNA cloning and molecular characterization of a human nucleotide excision repair gene with high homology to yeast RAD3. EMBO J. 9: 1437–1447.
  • Weeda, G., L. Ma, R. C. A. van Ham, D. Bootsma, A. J. van der Eb, and J. H. J. Hoeijmakers. 1991. Characterization of the mouse homolog of the XPBC/ERCC-3 gene implicated in xeroderma pigmentosum and Cockayne's syndrome. Carcinogenesis 12: 2361–2368.
  • Weeda, G., L. Ma, R. C. A. van Ham, A. J. van der Eb, and J. H. J. Hoeijmakers. 1991. Structure and expression of the human XPBCI ERCC-3 gene involved in DNA repair disorders xeroderma pigmentosum and Cockayne's syndrome. Nucleic Acids Res. 19: 6301–6308.
  • Weeda, G., R. C. A. van Ham, R. Masurel, A. Westerveld, H. Odijk, J. de Wit, D. Bootsma, A. J. van der Eb, and J. H. J. Hoeijmakers. 1990. Molecular cloning and biological characterization of the human excision repair gene ERCC-3. Mol. Cell. Biol. 10: 2570–2581.
  • Weeda, G., R. C. A. van Ham, W. Vermeulen, D. Bootsma, A. J. van der Eb, and J. H. J. Hoeijmakers. 1990. A presumed DNA helicase encoded by ERCC-3 is involved in the human repair disorders xeroderma pigmentosum and Cockayne's syndrome. Cell 62: 777–791.
  • Zantema, A., P. I. Schrier, A. Davis-Olivier, T. van Laar, R. T. M. J. Vaessen, and A. J. van der Eb. 1985. Adenovirus serotype determines association and localization of the large E1B tumor antigen with cellular tumor antigen p53 in transformed cells. Mol. Cell. Biol. 5: 3084–3091.
  • Zhu, L. A., and S. K. Weller. 1992. The six conserved helicase motifs of the UL5 gene product, a component of the herpes simplex virus type 1 helicase-primase, are essential for its function. J. Virol. 66: 469–479.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.