1
Views
8
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

Functional Substitution of an Essential Yeast RNA Polymerase Subunit by a Highly Conserved Mammalian Counterpart

&
Pages 4155-4159 | Received 02 Dec 1993, Accepted 03 Mar 1994, Published online: 30 Mar 2023

REFERENCES

  • Acker, J., M. Wintzerith, M. Vigneron, and C. Kedinger. 1993. Structure of the gene encoding the 14.5 kDa subunit of human RNA polymerase II. Nucleic Acids Res. 21: 5345–5350.
  • Adams, M. D., J. M. Kelley, J. D. Gocayne, M. Dubnick, M. H. Polymeropoulos, H. Xiao, C. R. Merril, A. Wu, B. Olde, R. F. Moreno, A. R. Kerlavage, W. R. McCombie, and J. Venter. 1991. Complementary DNA sequencing: expressed sequence tags and human genome project. Science 252: 1651–1656.
  • Allison, L. A., M. Moyle, M. Shales, and C. J. Ingles. 1985. Extensive homology among the largest subunits of eukaryotic and prokaryotic RNA polymerases. Cell 42: 599–610.
  • Amegadzie, B. Y., B.-Y. Ann, and B. Moss. 1992. Characterization of a 7-kilodalton subunit of vaccinia virus DNA-dependent RNA polymerase with structural similarities to the smallest subunit of eukaryotic RNA polymerase II. J. Virol. 66: 3003–3010.
  • Bell, G. I., P. Valenzuela, and W. J. Rutter. 1977. Phosphorylation of yeast DNA-dependent RNA polymerases in vivo and in vitro. Isolation of enzymes and identification of phosphorylated sub-units. J. Biol. Chem. 252: 3082–3091.
  • Boeke, J. D., J. Trueheart, G. Natsoulis, and G. R. Fink. 1987. 5-Fluoroorotic acid as a selective agent in yeast molecular genetics. Methods Enzymol. 154: 164–175.
  • Buhler, J. M., F. Iborra, A. Sentenac, and P. Fromageot. 1976. The presence of phosphorylated subunits in yeast RNA polymerases A and B. FEBS Lett. 72: 37–41.
  • Buratowski, S., S. Hahn, P. A. Sharp, and L. Guarente. 1988. Function of a yeast TATA element-binding protein in a mammalian transcription system. Nature (London) 334: 37–42.
  • Cavallini, B., J. Huet, J. L. Plassat, A. Sentenac, J. M. Egly, and P. Chambon. 1988. A yeast activity can substitute for the HeLa cell TATA box factor. Nature (London) 334: 77–80.
  • Cho, K. W., K. Khalili, R. Zandomeni, and R. Weinmann. 1985. The gene encoding the large subunit of human RNA polymerase II. J. Biol. Chem. 260: 15204–15210.
  • Comai, L., N. Tanese, and R. Tjian. 1992. The TATA-binding protein and associated factors are integral components of the RNA polymerase I transcription factor, SL1. Cell 68: 965–976.
  • Cormack, B. P., M. Strubin, A. S. Ponticelli, and K. Struhl. 1991. Functional differences between yeast and human TFIID are localized to the highly conserved region. Cell 65: 341–348.
  • Dayhoff, M. O., W. C. Barker, and L. T. Hunt. 1983. Establishing homologies in protein sequences. Methods Enzymol. 91: 524–545.
  • Dillon, P. J., and C. A. Rosen. 1990. A rapid method for the construction of synthetic genes using the polymerase chain reaction. BioTechniques 9: 298–300.
  • Flanagan, P. M., R. J. Kelleher, W. J. Feaver, N. F. Lue, J. W. LaPointe, and R. D. Kornberg. 1990. Resolution of factors required for the initiation of transcription by yeast RNA polymerase II. J. Biol. Chem. 265: 11105–11107.
  • Freund, E., and P. M. McGuire. 1986. Characterization of RNA polymerase type II from human term placenta. J. Cell. Physiol. 127: 432–438.
  • Gill, G., and R. Tjian. 1991. A highly conserved domain of TFIID displays species specificity in vivo. Cell 65: 333–340.
  • Ho, S. N., H. D. Hunt, R. M. Horton, J. K. Pullen, and L. R. Pease. 1989. Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 77: 51–59.
  • Kelleher, R. J., P. M. Flanagan, D. I. Chasman, A. S. Ponticelli, K. Struhl, and R. D. Kornberg. 1992. Yeast and human TFIIDs are interchangeable for the response to acidic transcriptional activators in vitro. Genes Dev. 6: 296–303.
  • Kolodziej, P., and R. A. Young. 1989. RNA polymerase II subunit RPB3 is an essential component of the mRNA transcription apparatus. Mol. Cell. Biol. 9: 5387–5394.
  • Kolodziej, P. A., N. Woychik, S. M. Liao, and R. A. Young. 1990. RNA polymerase II subunit composition, stoichiometry, and phosphorylation. Mol. Cell. Biol. 10: 1915–1920.
  • Kolodziej, P. A., and R. A. Young. 1991. Epitope tagging and protein surveillance. Methods Enzymol. 194: 508–519.
  • McKune, K., K. L. Richards, A. M. Edwards, R. A. Young, and N. A. Woychik. 1993. RPB7, one of two dissociable subunits of yeast RNA polymerase II, is essential for cell viability. Yeast 9: 295–299.
  • McKune, K., and N. A. Woychik. Submitted for publication.
  • Pati, U. K., and S. M. Weissman. 1989. Isolation and molecular characterization of a cDNA encoding the 23-kDa subunit of human RNA polymerase II. J. Biol. Chem. 264: 13114–13121. (Erratum, 266:13468, 1991.)
  • Pati, U. K., and S. M. Weissman. 1990. The amino acid sequence of the human RNA polymerase II 33-kDa subunit hRPB 33 is highly conserved among eukaryotes. J. Biol. Chem. 265: 8400–8403.
  • Peterson, M. G., N. Tanese, B. F. Pugh, and R. Tjian. 1990. Functional domains and upstream activation properties of cloned human TATA binding protein. Science 248: 1625–1630. (Erratum, 249:844.)
  • Rothstein, R. J. 1983. One-step gene disruption in yeast. Methods Enzymol. 101: 202–211.
  • Sweetser, D., M. Nonet, and R. A. Young. 1987. Prokaryotic and eukaryotic RNA polymerases have homologous core subunits. Proc. Natl. Acad. Sci. USA 84: 1192–1196.
  • Thompson, N. E., D. B. Aronson, and R. R. Burgess. 1990. Purification of eukaryotic RNA polymerase II by immunoaffinity chromatography. Elution of active enzyme with protein stabilizing agents from a polyol-responsive monoclonal antibody. J. Biol. Chem. 265: 7069–7077.
  • Treco, D. A., and V. Lundblad. 1993. Preparation of yeast media, p. 13.1.1–13.1.7. In K. Janssen (ed.), Current protocols in molecular biology. Greene Publishing Associates and John Wiley & Sons, New York.
  • Treich, I., C. Carles, M. Riva, and A. Sentenac. 1992. RPC10 encodes a new mini subunit shared by yeast nuclear RNA polymerases. Gene Expression 2: 31–37.
  • Woychik, N. A., W. S. Lane, and R. A. Young. 1991. Yeast RNA polymerase II subunit RPB9 is essential for growth at temperature extremes. J. Biol. Chem. 266: 19053–19055.
  • Woychik, N. A., S. M. Liao, P. A. Kolodziej, and R. A. Young. 1990. Subunits shared by eukaryotic nuclear RNA polymerases. Genes Dev. 4: 313–323.
  • Woychik, N. A., K. McKune, W. S. Lane, and R. A. Young. 1993. Yeast RNA polymerase II subunit RPB11 is related to a subunit shared by RNA polymerase I and III. Gene Expression 3: 77–82.
  • Woychik, N. A., and R. A. Young. 1989. RNA polymerase II subunit RPB4 is essential for high- and low-temperature yeast cell growth. Mol. Cell. Biol. 9: 2854–2859.
  • Woychik, N. A., and R. A. Young. 1990. RNA polymerase II subunit RPB10 is essential for yeast cell viability. J. Biol. Chem. 265: 17816–167819. (Erratum, 268:12230, 1993.)
  • Woychik, N. A., and R. A. Young. 1994. Exploration of RNA polymerase II structure and function, p. 227–242. In R. C. Conaway, and J. W. Conaway (ed.), Raven Press series on molecular and cellular biology, vol. 3. Transcription: mechanisms and regulation. Raven Press, New York.
  • Young, R. A. 1991. RNA polymerase II. Annu. Rev. Biochem. 60: 689–715.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.