0
Views
7
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

GATA Elements Are Necessary for the Activity and Tissue Specificity of the T-Cell Receptor Beta-Chain Transcriptional Enhancer

, , &
Pages 4286-4294 | Received 29 Dec 1993, Accepted 08 Mar 1994, Published online: 30 Mar 2023

REFERENCES

  • Anderson, S. J., S. Miyake, and D. Y. Loh. 1989. Transcription from a murine T-cell receptor Vβ promoter depends on a conserved decamer motif similar to cyclic AMP response element. Mol. Cell. Biol. 9: 4835–4845.
  • Blackwell, T. K., M. W. Moore, G. Yancopoulos, H. Suh, S. Lutzker, E. Seising, and F. W. Alt. 1986. Recombination between immunoglobulin variable region gene segments is enhanced by transcription. Nature (London) 324: 585–589.
  • Briegal, K., K.-C. Lin, C. Plank, H. Beug, J. D. Engel, and M. Zenke. 1993. Ectopic expression of a conditional GATA-2/estro-gen receptor chimera arrests erythroid differentiation in a hormone-dependent manner. Genes Dev. 7: 1097–1109.
  • Carlsson, P., M. L. Waterman, and K. A. Jones. 1993. The hLEF-l/TCF-lα HMG protein contains a context-dependent transcriptional activation domain that induces the TCRα enhancer in T cells. Genes Dev. 7: 2418–2430.
  • Davis, M. M., and P. J. Bjorkman. 1988. T-cell antigen receptor genes and T-cell recognition. Nature (London) 334: 395–402.
  • Dignam, J., R. Lebovitz, and R. Roeder. 1983. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 11: 1475–89.
  • Evans, T., and G. Felsenfeld. 1989. The erythroid-specific transcription factor Eryfl: a new zinc finger protein. Cell 58: 877–885.
  • Evans, T., M. Reitman, and G. Felsenfeld. 1988. An erythrocyte-specific DNA-binding factor recognizes a regulatory sequence common to all chicken globin genes. Proc. Natl. Acad. Sci. USA 85: 5976–5980.
  • Georgopoulos, K., B. A. Morgan, and D. D. Moore. 1992. Functionally distinct isoforms of the CRE-BP DNA-binding protein mediate activity of a T-cell specific enhancer. Mol. Cell. Biol. 12: 747–757.
  • Giese, K., and R. Grosschedl. 1993. LEF-1 contains an activation domain that stimulates transcription only in a specific context of factor-binding sites. EMBO J. 12: 4667–4676.
  • Gorman, C. M., G. T. Merlino, M. C. Willingham, I. Pastan, and B. H. Howard. 1982. The Rous sarcoma virus long terminal repeat is a strong promoter when introduced into a variety of eukaryotic cells by DNA-mediated transfection. Proc. Natl. Acad. Sci. USA 79: 6777–6781.
  • Gottschalk, L. R., and J. M. Leiden. 1990. Identification and functional characterization of the human T cell receptor 0 gene transcriptional enhancer: common nuclear proteins interact with the transcriptional regulatory elements of the T cell receptor a and β genes. Mol. Cell. Biol. 10: 5486–5495.
  • Hai, T. W., F. Liu, W. I. Coukos, and M. R. Green. 1989. Transcription factor ATF cDNA clones: an extensive family of leucine zipper proteins able to selectively form DNA-binding heterodimers. Genes Dev. 3: 2083–2090.
  • Ho, I.-C., N. K. Bhat, L. R. Gottschalk, T. Lindstin, C. B. Thompson, T. S. Papas, and J. M. Leiden. 1990. Sequence-specific binding of human Ets-1 to the T cell receptor a gene enhancer. Science 250: 814–818.
  • Ho, I.-C., P. Voorhees, N. Marin, B. K. Oakley, S.-F. Tsai, S. H. Orkin, and J. M. Leiden. 1991. Human GATA-3: a lineage restricted transcription factor that regulates the expression of the T cell receptor alpha gene. EMBO J. 10: 1187–1192.
  • Hoeffler, J. P., T. E. Meyer, Y. Yan, J. L. Jameson, and J. F. Habener. 1988. Cyclic AMP-response DNA-binding protein: structure based on a cloned placental cDNA. Science 242: 1430–1433.
  • Ishida, I., S. Verbeek, M. Bonneville, S. Itohara, A. Berns, and S. Tonegawa. 1990. T-cell receptor gamma delta and gamma transgenic mice suggest a role of a gamma gene silencer in the generation of alpha beta T cells. Proc. Natl. Acad. Sci. USA 87: 3067–3071.
  • Joulin, V., D. Bories, J.-F. Eleouet, M.-C. Labastie, S. Chretien, M.-G. Mattei, and P. H. Romeo. 1991. A T cell specific TCR 5 DNA binding protein is a member of the human GATA family. EMBO J. 10: 1809–1816.
  • Ko, L. J., and J. D. Engel. 1993. DNA-binding specificities of the GATA transcription factor family. Mol. Cell. Biol. 13: 4011–4022.
  • Ko, L. J., M. Yamamoto, M. W. Leonard, K. M. George, P. Ting, and J. D. Engel. 1991. Murine and human T-lymphocyte GATA-3 factors mediate transcription though a cis-regulatory element within the human T-cell receptor 8 gene enhancer. Mol. Cell. Biol. 11: 2778–2784.
  • Krimmpenfort, P., R. de Jong, Y. Uematsa, Z. Dembic, S. Ryser, H. von Boehmer, M. Steinmetz, and A. Berns. 1988. Transcription of T-cell receptor β-chain gene is controlled by downstream regulatory element. EMBO J. 7: 745–750.
  • Krummel, B. 1990. DNase 1 footprinting, p. 184–188. In M. Innis, D. Gelfand, J. Sninsky, and T. White (ed.), PCR protocols: a guide to methods and applications. Academic Press, Inc., San Diego, Calif.
  • Kuwabara, M., and D. Sigman. 1987. Footprinting DNA-protein complexes in situ following gel retardation assays using 1,10-phenanthroline-copper ion: Escherichia coli RNA polymerase-lac promoter complexes. Biochemistry 26: 7234–7238.
  • Landt, O., H.-P. Grunert, and U. Hahn. 1990. A general method for rapid site-directed mutagenesis using the polymerase chain reaction. Gene 96: 125–128.
  • Leiden, J. M. 1992. The T cell receptor a gene: a molecular model of transcriptional regulation during T cell development. Immunol. Today 13: 22–30.
  • Leiden, J. M. 1993. Regulation of T cell receptor genes. Annu. Rev. Immunol. 11: 539–570.
  • Luckow, B., and G. Schutz. 1987. CAT constructs with multiple unique restriction sites for the functional analysis of eukaryotic promoters and regulatory elements. Nucleic Acids Res. 15: 5490.
  • Maniatis, T., E. F. Fritsch, and J. Sambrook. 1982. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Marine, J., and A. Winoto. 1991. The human enhancer-binding protein Gata-3 binds several T-cell receptor regulatory elements. Proc. Natl. Acad. Sci. USA 88: 7284–7288.
  • Martin, D. I., L. I. Zon, G. Mutter, and S. H. Orkin. 1990. Expression of an erythroid transcription factor in megakaryocyte and mast cell lineages. Nature (London) 314: 444–447.
  • Maxam, A., and W. Gilbert. 1980. Sequencing end-labeled DNA with base specific chemical cleavages. Methods Enzymol. 65: 499–560.
  • McDougall, S., C. L. Peterson, and K. Calame. 1988. A transcriptional enhancer 3′ of Cβ2 in the T-cell receptor β locus. Science 241: 205–208.
  • Merika, M., and S. H. Orkin. 1993. DNA-binding specificity of GATA family transcription factors. Mol. Cell. Biol. 13: 3999–4010.
  • Messier, H., H. Brickner, J. Gaikwad, and A. Fotedar. 1993. A novel POU domain protein which binds to the T-cell beta enhancer. Mol. Cell. Biol. 13: 5450–5460.
  • Messier, H., T. Fuller, S. Mangal, H. Brickner, S. Igarashi, J. Gaiwad, R. Fotedar, and A. Fotedar. 1993. p70 lupus autoantigen binds the enhancer of the T-cell receptor beta-chain gene. Proc. Natl. Acad. Sci. USA 90: 2685–2689.
  • Montminy, M. R., K. A. Sevarino, J. A. Wagner, G. Mandel, and R. H. Goodman. 1986. Identification of a cyclic AMP-responsive element within the rat somatostatin gene. Proc. Natl. Acad. Sci. USA 83: 6682–6686.
  • Oosterwegel, M., J. Timmerman, J. M. Leiden, A. Kruisbeek, and H. Clevers. 1992. Expression of GATA-3 during lymphocyte differentiation and mouse embryogenesis. Dev. Immunol. 3: 1–11.
  • Oosterwegel, M., M. van de Wetering, D. Dooijes, L. Klomp, A. Winoto, K. Georgopoulos, F. Meijlink, and H. Clevers. 1991. Cloning of murine TCF-1, a T cell specific transcription factor interacting with functional motifs in the CD3-e and T cell receptor a enhancer. J. Exp. Med. 173: 1133–1142.
  • Orkin, S. H. 1992. GATA-binding factors in hematopoietic cells. Blood 80: 575–581.
  • Perrin, S., and G. Gilliland. 1990. Site-specific mutagenesis using asymmetric polymerase chain reaction and a single mutant primer. Nucleic Acids Res. 18: 7433–7438.
  • Pevny, L., M. C. Simon, E. Robertson, W. H. Klein, S. F. Tsai, V. D'Agati, S. H. Orkin, and F. Constantini. 1991. Erythroid differentiation in chimaeric mice blocked by targeted mutation in the gene for transcription factor GATA-1. Nature (London) 349: 257–260.
  • Prosser, H., D. Wotton, A. Gegonne, J. Ghysdail, S. Wang, N. A. Speck, and M. J. Owen. 1992. A phorbol ester response element within the human T-cell receptor β chain enhancer. Proc. Natl. Acad. Sci. USA 89: 9934–9938.
  • Prosser, H. M., R. A. Lake, D. Wotton, and M. J. Owen. 1991. Identification and functional analysis of the transcriptional enhancer of the human T-cell receptor β gene. Eur. J. Immunol. 21: 161–166.
  • Rahuel, C., M.-V. Vimit, V. Lemar-Chandel, J.-P. Carton, and P.-H. Romeo. 1992. Erythroid-specific activity of the glycophorin B promoter requires GATA-1 mediated displacement of a repressor. EMBO J. 11: 4095–4102.
  • Redondo, J. M., J. L. Pfol, C. Hernandez-Munain, S. Wang, N. A. Speck, and M. S. Krangel. 1992. Indistinguishable nuclear factor binding to functional core sites of the T-cell receptor 8 and murine leukemia virus enhancer. Mol. Cell. Biol. 12: 4817–4823.
  • Romeo, P. H., M. H. Prandini, V. Joulin, V. Mignotti, M. Prenart, G. Marguerie, and G. Uzan. 1990. Megakaryocytic and erythroid lineages share specific transcription factors. Nature (London) 344: 447–449.
  • Schatz, D., M. A. Oettinger, and D. Baltimore. 1989. The V(D)J recombination gene, RAG-1. Cell 59: 1035–1048.
  • Scheiber, E., P. Matthias, M. M. Muller, and W. Schaffner. 1988. Identification of a novel lymphoid specific octamer binding protein (OTF-2B) by proteolytic clipping bandshift assay (PCBA). EMBO J. 7: 4221–4229.
  • Takeda, S., A. Cheng, F. Mauxim, C. A. Nelson, R. D. Newbury, W. A. Sha, R. Sen, and D. Y. Loh. 1990. Functional analysis of the murine T-cell receptor beta enhancer and characterization of its DNA-binding proteins. Mol. Cell. Biol. 10: 5027–5035.
  • Travis, A., A. Amsterdam, C. Belanger, and R. Grosschedl. 1991. LEF-1, a gene encoding a lymphoid-specific protein with an HMG domain, regulates T-cell receptor a function. Genes Dev. 5: 880–894.
  • Tsai, S. F., D. I. Martin, L. I. Zon, A. D. D'Andrea, G. G. Wong, and S. H. Orkin. 1988. Cloning of cDNA for major DNA-binding protein of the erythroid lineage through expression in mammalian cells. Nature (London) 339: 446–451.
  • van de Wetering, M., M. Oosterwegel, D. Dooijes, and H. Clevers. 1991. Identification and cloning of TCF-1, a T lymphocyte-specific transcription factor containing a sequence-specific HMG box. EMBO J. 10: 123–132.
  • van de Wetering, M., M. Oosterwegel, K. van Norren, and H. Clevers. 1993. Sox-4, an Sry-like HMG box protein, is a transcriptional activator in lymphocytes. EMBO J. 12: 3847–3854.
  • van Zonneveld, A.-J., S. A. Curriden, and D. J. Loskutoff. 1988. Type 1 plasminogen activator inhibitor gene: functional analysis and glucocorticoid regulation of its promoter. Proc. Natl. Acad. Sci. USA 85: 5525–5529.
  • von Boehmer, H. 1988. T-cell antigen receptor and T-cell recognition. Annu. Rev. Immunol. 6: 309–326.
  • Waterman, M. L., W. H. Fisher, and K. A. Jones. 1991. A thymus-specific member of the HMG protein family regulates the human T cell C a enhancer. Genes Dev. 5: 656–669.
  • Wilkinson, M. F., and C. L. MacLeod. 1988. Induction of T cell receptor a and 0 mRNA in SL12 cells can occur by transcriptional and post-transcriptional mechanisms. EMBO J. 7: 101–108.
  • Winoto, A., and D. Baltimore. 1989. αβ lineage-specific expression of the α T cell receptor gene by nearby silencers. Cell 59: 649–655.
  • Yancopoulos, G., T. K. Blackwell, H. Suh, L. Hood, and F. W. Alt. 1986. Introduced T-cell receptor variable region gene segments recombine in pre-B cells: evidence that B and T cells use a common recombinase. Cell 44: 251–259.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.