11
Views
24
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Cell Transformation by c-fos Requires an Extended Period of Expression and Is Independent of the Cell Cycle

&
Pages 4295-4310 | Received 21 Jan 1994, Accepted 24 Mar 1994, Published online: 30 Mar 2023

REFERENCES

  • Abate, C., F. J. RauscherIII, R. Gentz, and T. Curran. 1990. Expression and purification of the leucine zipper and the DNA-binding domains of Fos and Jun: both Fos and Jun directly contact DNA. Proc. Natl. Acad. Sci. USA 87: 1032–1036.
  • Auvinen, M., A. Paasinen, L. C. Andersson, and E. Holtta. 1992. Ornithine decarboxylase activity is critical for cell transformation. Nature (London) 360: 355–358.
  • Bell, J. G., J. A. Wyke, and I. A. MacPherson. 1975. Transformation by a temperature sensitive mutant of Rous sarcoma virus in the absence of serum. J. Gen. Virol. 27: 127–134.
  • Bravo, R., J. Burckhardt, T. Curran, and R. Muller. 1986. Expression of c-fos in NIH3T3 cells is very low but inducible throughout the cell cycle. EMBO J. 5: 695–700.
  • Breathnach, R. 1991. Matrix metalloproteinases and tumor invasion, p. 825–831. In J. Brugge, T. Curran, E. Harlow, and F. McCormick (ed.), Origins of human cancer. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Brown, P. H., R. Alani, L. H. Preis, E. Szabo, and M. J. Birrer. 1993. Suppression of oncogene-induced transformation by a deletion mutant of c-jun. Oncogene 8: 877–886.
  • Catling, A. D., J. A. Wyke, and M. C. Frame. 1993. Mitogenesis of quiescent chick fibroblasts by v-Src: dependence on events at the membrane leading to early changes in AP-1. Oncogene 8: 1875–1886.
  • Chen, C., and H. Okayama. 1987. High-efficiency transformation of mammalian cells by plasmid DNA. Mol. Cell. Biol. 7: 2745–2752.
  • Chomczynski, P., and N. Sacchi. 1987. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162: 156–159.
  • Cohen, D. R., and T. Curran. 1990. Analysis of dimerization and DNA binding functions in Fos and Jun by domain-swapping: involvement of residues outside of the leucine zipper/basic region. Oncogene 5: 929–939.
  • Curran, T. 1982. Ph.D. thesis. University of London, London, England.
  • Curran, T. 1988. The fos oncogene, p. 307–325. In E. P. Reddy, A. M. Skalka, and T. Curran (ed.), The oncogene handbook. Elsevier, Amsterdam.
  • Curran, T., A. D. Miller, L. Zokas, and I. M. Verma. 1984. Viral and cellular fos proteins: a comparative analysis. Cell 36: 259–268.
  • Curran, T., G. Peters, C. Van Beveren, N. M. Teich, and I. M. Verma. 1982. FBJ murine osteosarcoma virus: identification and molecular cloning of biologically active proviral DNA. J. Virol. 44: 674–682.
  • Curran, T., and N. M. Teich. 1982. Candidate product of the FBJ murine osteosarcoma virus oncogene: characterization of a 55,000-dalton phosphoprotein. J. Virol. 42: 114–122.
  • Curran, T., and N. M. Teich. 1982. Identification of a 39,000-dalton protein in cells transformed by the FBJ murine osteosarcoma virus. Virology 116: 221–235.
  • Curran, T., and I. M. Verma. 1984. FBR murine osteosarcoma virus. I. Molecular analysis and characterization of a 75,000-dalton gag-fos fusion product. Virology 135: 218–228.
  • Curran, T., and P. K. Vogt. 1992. Dangerous liaisons: Fos and Jun, oncogenic transcription factors, p. 797–831. In S. L. McKnight, and K. R. Yamamoto (ed.), Transcriptional regulation, book 2. Cold Spring Harbor Press, Cold Spring Harbor, N.Y.
  • Everts, V., J. M. Delaisse, W. Korper, A. Niehof, G. Vaes, and W. Beertsen. 1992. Degradation of collagen in the bone-resorbing compartment underlying the osteoclast involves both cysteine proteinases and matrix metalloproteinases. J. Cell. Physiol. 150: 221–231.
  • Field, S. J., R. S. Johnson, R. M. Mortensen, V. E. Papaioannou, B. M. Spiegelman, and M. E. Greenberg. 1992. Growth and differentiation of embryonic stem cells that lack an intact c-fos gene. Proc. Natl. Acad. Sci. USA 89: 9306–9310.
  • Finkel, M. P., B. O. Biskis, and P. B. Jinkins. 1966. Virus induction of osteosarcomas in mice. Science 151: 698–701.
  • Finkel, M. P., C. A. ReillyJr., and B. O. Biskis. 1975. Viral etiology of bone cancer. Front. Radiat. Ther. Oncol. 10: 28–39.
  • Franza, B. R.Jr., L. C. Sambucetti, D. R. Cohen, and T. Curran. 1987. Analysis of Fos protein complexes and Fos-related antigens by high-resolution two-dimensional gel electrophoresis. Oncogene 1: 213–221.
  • Friis, R. R., B. M. Jockusch, C. B. Boschek, A. Ziemiecki, H. Rubsamen, and H. Bauer. 1980. Transformation-defective, temperature-sensitive mutants of Rous sarcoma virus have a reversibly defective src-gene product. Cold Spring Harbor Symp. Quant. Biol. 44: 1007–1012.
  • Fujii, M., D. Shalloway, and I. M. Verma. 1989. Gene regulation by tyrosine kinases: Src protein activates various promoters, including c-fos. Mol. Cell. Biol. 9: 2493–2499.
  • Gauthier-Rouviere, C., A. Fernandez, and N. J. C. Lamb. 1990. ras-induced c-fos expression and proliferation in living rat fibroblasts involves C-kinase activation and the serum response element pathway. EMBO J. 9: 171–180.
  • Gentz, R., F. J. RauscherIII, C. Abate, and T. Curran. 1989. Parallel association of Fos and Jun leucine zippers juxtaposes DNA binding domains. Science 243: 1695–1699.
  • Greenberg, M. E., and E. B. Ziff. 1984. Stimulation of 3T3 cells induces transcription of the c-fos proto-oncogene. Nature (London) 311: 433–438.
  • Grigoriadis, A. E., K. Schellander, Z.-Q. Wang, and E. F. Wagner. 1993. Osteoblasts are target cells for transformation in c-fos transgenic mice. J. Cell Biol. 122: 685–701.
  • Hawker, K. L., A. Pintzas, R. F. Hennigan, D. A. F. Gillespie, and B. W. Ozanne. 1993. Transformation by fos or jun oncogenes does not increase AP-1 DNA-binding activity. J. Virol. 67: 5487–5495.
  • Heby, O., and L. Persson. 1990. Molecular genetics of polyamine synthesis in eucaryotic cells. Trends Biochem. Sci. 15: 153–158.
  • Holt, J. T., T. V. Gopal, A. D. Moulton, and A. W. Nienhuis. 1986. Inducible production of c-fos antisense RNA inhibits 3T3 cell proliferation. Proc. Natl. Acad. Sci. USA 83: 4794–4798.
  • Holtta, E., M. Auvinen, and L. C. Andersson. 1993. Polyamines are essential for cell transformation by pp60v-src: delineation of molecular events relevant for the transformed phenotype. J. Cell Biol. 122: 903–914.
  • Holtta, E., L. Sistonen, and K. Alitalo. 1988. The mechanisms of ornithine decarboxylase deregulation in c-Ha-ras-oncogene-trans-formed NIH3T3 cells. J. Biol. Chem. 263: 4500–4507.
  • Jamal, S., and E. Ziff. 1990. Transactivation of c-fos and β-actin genes as a step in early response to transmembrane signals. Nature (London) 344: 463–466.
  • Jenuwein, T., D. Muller, T. Curran, and R. Muller. 1985. Extended life span and tumorigenicity of nonestablished mouse connective tissue cells transformed by the fos oncogene of FBR-MuSV. Cell 41: 629–637.
  • Jenuwein, T., and R. Muller. 1987. Structure-function analysis of Fos protein: a single amino acid change activates the immortalizing potential of v-fos. Cell 48: 647–657.
  • Johnson, R. S., B. M. Spiegelman, and V. Papaioannou. 1992. Pleiotropic effects of a null mutation in the c-fos proto-oncogene. Cell 71: 577–586.
  • Kerr, L. D., J. T. Holt, and L. M. Matrisian. 1988. Growth factors regulate transin gene expression by c-fos-dependent and fos-independent pathways. Science 242: 1424–1427.
  • Kouzarides, T., and E. Ziff. 1988. The role of the leucine zipper in the fos-jun interaction. Nature (London) 336: 646–651.
  • Kovary, K., and R. Bravo. 1991. The Jun and Fos protein families are both required for cell cycle progression in fibroblasts. Mol. Cell. Biol. 11: 4466–4472.
  • Kovary, K., and R. Bravo. 1992. Existence of different Fos/Jun complexes during the GO-to-Gl transition and during exponential growth in mouse fibroblasts: differential role of Fos proteins. Mol. Cell. Biol. 12: 5015–5023.
  • Kruijer, W., J. A. Cooper, T. Hunter, and I. M. Verma. 1984. Platelet-derived growth factor induces rapid but transient expression of the c-fos gene and protein. Nature (London) 312: 711–716.
  • Labow, M. A., S. B. Baim, T. Shenk, and A. J. Levine. 1990. Conversion of the lac repressor into an allosterically regulated transcriptional activator for mammalian cells. Mol. Cell. Biol. 10: 3343–3356.
  • Landschulz, W. H., P. F. Johnson, and S. L. McKnight. 1988. The leucine zipper: a hypothetical structure common to a new class of DNA-binding proteins. Science 240: 1759–1764.
  • Lloyd, A., N. Yancheva, and B. Wasylyk. 1991. Transformation suppressor activity of a Jun transcription factor lacking its activation domain. Nature (London) 352: 635–638.
  • Lloyd, A. C., H. F. Paterson, J. D. H. Morris, A. Hall, and C. J. Marshall. 1989. p21H-ras-induced morphological transformation and increases in c-myc expression are independent of functional protein kinase C. EMBO J. 8: 1099–1104.
  • Marshall, C. J. 1990. How does p21ras transform cells? Trends Genet. 7: 91–95.
  • Martin, G. S., S. Venuta, M. Weber, and H. Rubin. 1971. Temperature-dependent alterations in sugar transport in cells infected by a temperature-sensitive mutant of Rous sarcoma virus. Proc. Natl. Acad. Sci. USA 68: 2739–2741.
  • Matrisian, L. M., G. T. Bowden, P. Krieg, G. Furstenberger, J. P. Briand, P. Leroy, and R. Breathnach. 1986. The mRNA coding for the secreted protease transin is expressed more abundantly in malignant than in benign tumors. Proc. Natl. Acad. Sci. USA 83: 9413–9417.
  • Matrisian, L. M., N. Glaichenhaus, M. C. Gesnel, and R. Breathnach. 1985. Epidermal growth factor and oncogenes induce transcription of the same cellular mRNA in rat fibroblasts. EMBO J. 4: 1435–1440.
  • McDonnell, S. E., L. D. Kerr, and L. M. Matrisian. 1990. Epidermal growth factor stimulation of stromelysin mRNA in rat fibroblasts requires induction of proto-oncogenes c-fos and c-jun and activation of protein kinase C. Mol. Cell. Biol. 10: 4284–4293.
  • Meijlink, F., T. Curran, A. D. Miller, and I. M. Verma. 1985. Removal of a 67 base pair sequence in the noncoding region of proto-oncogene fos converts it to a transforming gene. Proc. Natl. Acad. Sci. USA 82: 4987–4991.
  • Miller, A. D., T. Curran, and I. M. Verma. 1984. c-fos protein can induce cellular transformation: a novel mechanism of activation of a cellular oncogene. Cell 36: 259–268.
  • Morgan, J. I., and T. Curran. 1991. Stimulus-transcription coupling in the nervous system: involvement of the inducible proto-oncogenes fos and jun. Ann. Rev. Neurosci. 14: 421–451.
  • Morris, J. D. H., B. Price, A. C. Lloyd, A. J. Self, C. J. Marshall, and A. Hall. 1989. Scrape-loading of Swiss 3T3 cells with ras protein rapidly activates protein kinase C in the absence of phosphoinositide hydrolysis. Oncogene 4: 27–31.
  • Muller, R., R. Bravo, J. Burchkhardt, and T. Curran. 1984. Induction of c-fos gene and protein by growth factors precedes activation of c-myc. Nature (London) 312: 716–720.
  • Nakabeppu, Y., S. Oda, and M. Sekiguchi. 1993. Proliferative activation of quiescent Rat-la cells by AFosB. Mol. Cell. Biol. 13: 4157–4166.
  • Neuberg, M., M. Schuermann, and R. Muller. 1991. Mutagenesis of the DNA contact site in Fos protein: compatibility with the scissors grip model and requirement for transformation. Oncogene 6: 1325–1333.
  • Nishikura, K., and J. M. Murray. 1987. Antisense RNA of proto-oncogene c-fos blocks renewed growth of quiscent 3T3 cells. Mol. Cell. Biol. 7: 639–649.
  • Nishizawa, M., N. Goto, and S. Kawai. 1987. An avian transforming retrovirus isolated from a nephroblastoma that carries the fos gene as the oncogene. J. Virol. 16: 3733–3740.
  • Papavassiliou, A. G., M. Treier, C. Chavrier, and D. Bohmann. 1992. Targeted degradation of c-Fos, but not v-Fos, by a phos-phorylation-dependent signal on c-Jun. Science 258: 1941–1944.
  • Patwardhan, S., A. Gashler, M. G. Siegel, L. C. Chang, L. J. Joseph, T. B. Shows, M. M. Le Beau, and V. P. Sukhatme. 1991. EGR-3, a novel member of the Egr family of genes encoding immediate-early transcription factors. Oncogene 6: 917–928.
  • Picard, D. 1993. Steroid-binding domains for regulating the functions of heterologous proteins in cis. Trends Cell Biol. 3: 278–280.
  • Quade, K. 1979. Transformation of mammalian cells by avian myelocytomatosis and avian erythroblastosis virus. Virology 98: 461–465.
  • Rauscher, F. J.III, L. C. Sambucetti, T. Curran, R. J. Distel, and B. M. Spiegelman. 1988. A common DNA binding site for Fos protein complexes and transcriptional factor AP-1. Cell 52: 471–480.
  • Reddy, E. P., A. M. Skalka, and T. Curran (ed.). 1988. The oncogene handbook. Elsevier, Amsterdam.
  • Riabowol, K. T., R. J. Vosatka, E. B. Ziff, N. J. Lamb, and J. R. Feramisco. 1988. Microinjection of fos-specific antibodies blocks DNA synthesis in fibroblast cells. Mol. Cell. Biol. 8: 1670–1676.
  • Rohrschneider, L. R. 1980. Localization of pp60src with normal rat kidney cells infected with temperature-sensitive mutants (T-class) of Rous sarcoma virus. Cold Spring Harbor Symp. Quant. Biol. 44: 1013–1022.
  • Samuels, M. L., M. J. Weber, J. M. Bishop, and M. McMahon. 1993. Conditional transformation of cells and rapid activation of the mitogen-activated protein kinase cascade by an estradiol-dependent human Raf-1 protein kinase. Mol. Cell. Biol. 13: 6241–6252.
  • Schonthal, A., H. J. Herrlich, P. Rhamsdorf, and H. Ponta. 1988. Requirements for fos gene expression in the transcriptional activation of collagenase by other oncogenes and phorbol esters. Cell 54: 325–334.
  • Schuermann, M., G. Hennig, and R. Muller. 1993. Transcriptional activation and transformation by chimaeric Fos-estrogen receptor proteins: altered properties as a consequence of gene fusion. Oncogene 8: 2781–2790.
  • Schuermann, M., K. Jooss, and R. Muller. 1991. fosB is a transforming gene encoding a transcriptional activator. Oncogene 6: 567–576.
  • Schuermann, M., M. Neuberg, J. B. Hunter, T. Jenuwein, R.-P. Ryseck, R. Bravo, and R. Muller. 1989. The leucine zipper motif in Fos protein mediates complex formation with Jun/AP-1 and is required for transformation. Cell 56: 507–516.
  • Smeyne, R. J., K. Schilling, L. Robertson, D. Luk, J. Oberdick, T. Curran, and J. I. Morgan. 1992. Fos-lac Z transgenic mice: mapping sites of gene induction in the central nervous system. Neuron 8: 13–23.
  • Smeyne, R. J., M. Vendrell, M. Hayward, S. J. Baker, G. G. Miao, K. Schilling, L. Roberston, T. Curran, and J. I. Morgan. 1993. Continuous c-fos expression precedes programmed cell death in vivo. Nature (London) 363: 166–169.
  • Stacey, D. W., and H. Kung. 1984. Transformation of NIH3T3 cells by microinjection of Ha-ras p21 protein. Nature (London) 310: 508–511.
  • Stacey, D. W., T. Watson, H.-F. Kung, and T. Curran. 1987. Microinjection of transforming ras protein induces c-fos expression. Mol. Cell. Biol. 7: 523–527.
  • Superti-Furga, G., G. Bergers, D. Picard, and M. Busslinger. 1991. Hormone-dependent transcriptional regulation and cellular transformation by Fos-steroid receptor fusion proteins. Proc. Natl. Acad. Sci. USA 88: 5114–5118.
  • Suzuki, T., M. Murakami, N. Onai, E. Fukuda, Y. Hashimoto, M. H. Sonobe, T. Kameda, M. Ichinose, K. Miki, and H. Iba. 1994. Analysis of AP-1 function in cellular transformation pathways. J. Virol. 68: 3527–3535.
  • Thayer, M. J., and H. Weintraub. 1993. A cellular factor stimulates the DNA-binding activity of MyoD and E47. Proc. Natl. Acad. Sci. USA 90: 6483–6487.
  • Turner, R., and R. Tjian. 1989. Leucine repeats and an adjacent DNA-binding domain mediate the formation of functional c-fos-cjun heterodimers. Science 243: 1689–1694.
  • Wang, Z., A. Grigoriadis, U. Mohle-Steinlein, and E. F. Wagner. 1991. A novel target cell for c-fos-induced oncogenesis: development of chondrogenic tumors in embryonic stem cell chimeras. EMBO J. 10: 2437–2450.
  • Wang, Z., C. Ovitt, A. E. Grigoriadis, U. Mohle-Steinlein, U. Ruther, and E. F. Wagner. 1992. Bone and haematopoietic defects in mice lacking c-fos. Nature (London) 360: 741–745.
  • Wick, M., F. C. Lucibello, and R. Muller. 1992. Inhibition of Fos-and Ras-induced transformation by mutant Fos proteins with structural alterations in functionally different domains. Oncogene 7: 859–867.
  • Wisdom, R., and I. M. Verma. 1993. Transformation by Fos proteins requires a C-terminal transactivation domain. Mol. Cell. Biol. 13: 7429–7438.
  • Wrighton, C., and M. Busslinger. 1993. Direct transcription stimulation of the ornithine decarboxylase gene by Fos in PC 12 cells but not in fibroblasts. Mol. Cell. Biol. 13: 4657–4669.
  • Wyborski, D. L., and J. M. Short. 1991. Analysis of inducers of the E. coli lac repressor system in mammalian cells and whole animals. Nucleic Acids Res. 19: 4647–4653.
  • Wyke, A. W., W. Cushley, and J. A. Wyke. 1993. Mitogenesis by v-src: a need for active oncoprotein both in leaving GO and in completing Gl phases of the cell cycle. Cell Growth Differ. 4: 671–678.
  • Xanthoudakis, S., G. G. Miao, F. Wang, Y.-C. E. Pan, and T. Curran. 1992. Redox activation of Fos-Jun DNA binding activity is mediated by a DNA repair enzyme. EMBO J. 11: 3323–3335.
  • Yoshida, T., Y. Shindo, K. Ohta, and H. Iba. 1989. Identification of a small region of the v-fos gene product that is sufficient for transforming potential and growth stimulating activity. Oncogene Res. 5: 79–89.
  • Zambetti, G. P., D. Olson, M. A. Labow, and A. J. Levine. 1992. A mutant p53 protein is required for maintenance of the transformed phenotype in cells transformed with p53 plus ras cDNA. Proc. Natl. Acad. Sci. USA 89: 3952–3956.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.