5
Views
8
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Protein Kinase A Acts at Multiple Points To Inhibit Xenopus Oocyte Maturation

, &
Pages 4419-4426 | Received 25 Jan 1994, Accepted 01 Apr 1994, Published online: 30 Mar 2023

Refrences

  • Ahn, N., R. Seger, and E. Krebs. 1992. The mitogen-activated protein kinase activator. Curr. Opin. Cell Biol. 4: 992–999.
  • Ahn, N. G., J. S. Campbell, R. Seger, A. L. Jensen, L. M. Graves, and E. G. Krebs. 1993. Metabolic labeling of mitogen-activated protein kinase kinase in A431 cells demonstrates phosphorylation on serine and threonine residues. Proc. Natl. Acad. Sci. USA 90: 5143–5147.
  • Anderson, N. G., P. Li, L. A. Marsden, N. William, T. M. Roberts, and T. W. Sturgill. 1991. Raf-1 is a potential substrate for mitogen activated protein kinase in vivo. Biochem. J. 277: 573–576.
  • Boulton, T., S. Nye, D. Robbins, N. Ip, E. Radziejewska, S. Morgenbesser, R. DePinho, N. Panayotatos, M. Cobb, and G. Yancopoulos. 1991. ERKs: a family of protein-serine/threonine kinases that are activated and tyrosine phosphorylated in response to insulin and NGF. Cell 65: 663–675.
  • Cook, S., and F. McCormick. 1993. Inhibition by cAMP of Ras-dependent activation of Raf. Science 262: 1069–1071.
  • Crews, C., A. Alessandrini, and R. Erikson. 1992. The primary structure of MEK, a protein kinase that phosphorylates the ERK gene product. Science 258: 478–480.
  • Daar, I., R. S. Paules, and G. F. Vande Woude. 1991. A characterization of cytostatic factor activity from Xenopus eggs and c-mos-transformed cells. J. Cell Biol. 114: 329–335.
  • Daar, I., N. Yew, and G. F. Vande Woude. 1993. Inhibition of Mos-induced oocyte maturation by protein kinase A. J. Cell Biol. 120: 1197–1202.
  • Dent, P., W. Haser, T. A. J. Haystead, L. A. Vincent, T. M. Roberts, and T. W. Sturgill. 1992. Activation of mitogen-activated protein kinase by v-Raf in NIH/3T3 cells and in vitro. Science 257: 1404–1407.
  • Dumont, J. 1972. Oogenesis in Xenopus laevis (Daudin). J. Mor-phol. 136: 153–180.
  • Dunphy, W., and A. Kumagai. 1991. The cdc25 protein contains an intrinsic phosphatase activity. Cell 67: 189–196.
  • Fabian, J., D. Morrison, and I. Daar. 1993. Requirement for Raf and MAP kinase function during the meiotic maturation of Xenopus oocytes. J. Cell Biol. 122: 645–652.
  • Ferrell, J., M. Wu, J. Gerhart, and G. Martin. 1991. Cell cycle tyrosine phosphorylation of p34cdc2 and a microtubule-associated protein kinase homolog in Xenopus oocytes and eggs. Mol. Cell. Biol. 11: 1965–1971.
  • Fukasawa, K., T. Choi, and G. F. Vande Woude. Unpublished data.
  • Gabrielli, B., L. Roy, and J. Mailer. 1993. Requirement for Cdk2 in cytostatic factor-mediated metaphase II arrest. Science 259: 1766–1769.
  • Gautier, J., M. Solomon, R. Booher, J. Bazan, and M. Kirschner. 1991. cdc25 is a specific tyrosine phosphatase that directly activates p34cdc2. Cell 67: 197–211.
  • Gomez, N., and P. Cohen. 1991. Dissection of the protein kinase cascade by which nerve growth factor activates MAP kinases. Nature (London) 353: 170–173.
  • Gotoh, Y., K. Moriyama, S. Matsuda, E. Okumura, T. Kishimoto, H. Kawasaki, K. Suzuki, I. Yahara, H. Sakai, and E. Nishida. 1991. Xenopus M phase MAP kinase: isolation of its cDNA and activation by MPF. EMBO J. 10: 2661–2668.
  • Gotoh, Y., E. Nishida, S. Matsuda, N. Shiina, H. Kosato, K. Shirokawa, T. Akiyama, K. Ohta, and H. Sakai. 1991. In vitro effects on microtubule dynamics of purified Xenopus M-phase-activated MAP kinase. Nature (London) 349: 251–254.
  • Graves, L., K. Bornfeldt, E. Raines, B. Potts, S. MacDonald, R. Ross, and E. Krebs. 1993. Protein kinase A antagonizes platelet-derived growth factor-induced signaling by mitogen-activated protein kinase in human arterial smooth muscle cells. Proc. Natl. Acad. Sci. USA 90: 10300–10304.
  • Haccard, O., B. Sarcevic, A. Lewellyn, R. Hartley, L. Roy, T. Izumi, E. Erikson, and J. Mailer. 1993. Induction of metaphase arrest in cleaving Xenopus embryos by MAP kinase. Science 262: 1262–1265.
  • Hirsch, A., S. Glantz, Y. Li, Y. You, and C. Rubin. 1992. Cloning and expression of an intron-less gene for AKAP 75, an anchor protein for the regulatory subunit of cAMP-dependent protein kinase II beta. J. Biol. Chem. 267: 2131–2134.
  • Hoffman, I., P. Clarke, M. J. Marcote, E. Karsenti, and G. Draetta. 1993. Phosphorylation and activation of human cdc25-C by cdc2-cyclin B and its involvement in the self-amplification of MPF at mitosis. EMBO J. 12: 53–63.
  • Howe, L. R., S. J. Leevers, N. Gomez, S. Nakielny, P. Cohen, and C. J. Marshall. 1992. Activation of the MAP kinase pathway by the protein kinase Raf. Cell 71: 335–342.
  • Huang, W., A. Alessandrini, C. Crews, and R. Erikson. 1993. Raf-1 forms a stable complex with Mekl and activates Mekl by serine phosphorylation. Proc. Natl. Acad. Sci. USA 90: 10947–10951.
  • Izumi, T., D. Walker, and J. Mailer. 1992. Periodic changes in phosphorylation of the Xenopus cdc25 phosphatase regulate its activity. Mol. Biol. Cell 3: 927–939.
  • Kanki, J., and D. Donoghue. 1991. Progression from meiosis I to meiosis II in Xenopus oocytes requires de novo translation of the mosxe proto-oncogene. Proc. Natl. Acad. Sci. USA 88: 5794–5798.
  • Keryer, G., Z. Luo, J. Cavadore, J. Erlichman, and M. Bornens. 1993. Phosphorylation of the regulatory subunit of type II-beta cAMP-dependent protein kinase by cyclin B/p34cdc2 kinase impairs its binding to microtubule-associated protein 2. Proc. Natl. Acad. Sci. USA 90: 5418–5422.
  • Kumagai, A., and W. Dunphy. 1992. Regulation of the cdc25 protein during the cell cycle in Xenopus extracts. Cell 70: 139–151.
  • Kyriakis, J. M., H. App, X.-F. Zhang, P. Banerjee, D. L. Brautigan, U. R. Rapp, and J. Avruch. 1992. Raf-1 activates MAP kinase-kinase. Nature (London) 358: 417–421.
  • Lee, M. S., S. Ogg, M. Xu, L. L. Parker, D. J. Donoghue, J. L. Mailer, and H. Piwnica-Worms. 1992. cdc25+ encodes a protein phosphatase that dephosphorylates p34cdc2. Mol. Biol. Cell 3: 73–84.
  • Lee, R., M. H. Cobb, and P. K. Blackshear. 1992. Evidence that the extracellular signal-regulated kinases are the insulin-activated Raf-1 kinase kinases. J. Biol. Chem. 267: 1088–1092.
  • MacDonald, S., C. Crews, L. Wu, J. Driller, R. Clark, R. Erikson, and F. McCormick. 1993. Reconstitution of the Raf-l-MEK-ERK signal transduction pathway in vitro. Mol. Cell. Biol. 13: 6615–6620.
  • Mailer, J., and E. Krebs. 1977. Progesterone-stimulated meiotic cell division in Xenopus oocytes. J. Biol. Chem. 525: 1712–1718.
  • Masui, Y., and C. L. Markert. 1971. Cytoplasmic control of nuclear behavior during meiotic maturation of frog oocytes. J. Exp. Zool. 177: 129–146.
  • Matsuda, S., Y. Gotoh, and E. Nishida. 1993. Phosphorylation of Xenopus mitogen-activated protein (MAP) kinase kinase by MAP kinase kinase kinase and MAP kinase. J. Biol. Chem. 268: 3277–3281.
  • Matsuda, S., H. Kosako, K. Takenaka, K. Moriyama, H. Sakai, T. Akiyama, Y. Gotoh, and E. Nishida. 1992. Xenopus MAP kinase activator: identification and function as a key intermediate in the phosphorylation cascade. EMBO J. 11: 973–982.
  • Moreno, S., and P. Nurse. 1991. Clues to action of cdc25 protein. Nature (London) 351: 194.
  • Morrison, D., D. Kaplan, J. Escobedo, U. Rapp, T. Roberts, and L. Williams. 1989. Direct activation of serine-threonine kinase activity of the protooncogene Raf-1 through tyrosine phosphorylation by the PDGF-beta receptor. Cell 58: 649–657.
  • Mulner, O., D. Huchon, C. Thibier, and R. Ozon. 1979. cAMP synthesis in Xenopus laevis oocytes: inhibition by progesterone. Biochim. Biophys. Acta 582: 179–184.
  • Muslin, A., A. MacNicol, and L. Williams. 1993. Raf-1 protein kinase is important for progesterone-induced Xenopus oocyte maturation and acts downstream of Mos. Mol. Cell. Biol. 13: 4197–4202.
  • Nebreda, A., and T. Hunt. 1993. The c-mos proto-oncogene protein kinase turns on and maintains the activity of MAP kinase, but not MPF, in cell-free extracts of Xenopus oocytes and eggs. EMBO J. 12: 1979–1986.
  • O'Connor, C., and L. Smith. 1976. Inhibition of oocyte maturation by theophylline: possible mechanism of action. Dev. Biol. 52: 318–322.
  • Posada, J., and J. A. Cooper. 1992. Requirements for phosphorylation of MAP kinase during meiosis in Xenopus oocytes. Science 255: 212–215.
  • Posada, J., N. Yew, N. G. Ahn, G. F. Vande Woude, and J. A. Cooper. 1993. Mos stimulates MAP kinase in Xenopus oocytes and activates a MAP kinase kinase in vitro. Mol. Cell. Biol. 13: 2546–2553.
  • Rime, H., O. Haccard, and R. Ozon. 1992. Activation of p34cdc2 kinase by cyclin is negatively regulated by cyclic AMP-dependent protein kinase in Xenopus oocytes. Dev. Biol. 151: 105–110.
  • Robbins, D., E. Zhen, H. Okami, C. Vanderbilt, D. Ebert, T. Geppert, and M. Cobb. 1993. Regulation and properties of extracellular signal-regulated protein kinases 1 and 2 in vitro. J. Biol. Chem. 267: 14373–14381.
  • Roberts, T. 1992. A signal chain of events. Nature (London) 360: 534–535.
  • Sadler, S., and J. Mailer. 1987. In vivo regulation of cyclic AMP phosphodiesterase in Xenopus oocytes. J. Biol. Chem. 262: 10644–10650.
  • Sagata, N., M. Oskarsson, T. Copeland, J. Brumbaugh, and G. F. Vande Woude. 1988. Function of c-mos proto-oncogene product in meiotic maturation in Xenopus oocytes. Nature (London) 335: 519–525.
  • Sagata, N., N. Watanabe, G. F. Vande Woude, and Y. Ikawa. 1989. The c-mos proto-oncogene product is a cytostatic factor (CSF) responsible for meiotic arrest in vertebrate eggs. Nature (London) 342: 512–518.
  • Schultz, A., T. Copeland, G. Mark, U. Rapp, and S. Oroszlan. 1985. Detection of the myristylated gag-raf transforming protein with raf-specific antipeptide sera. Virology 146: 78–89.
  • Shibuya, E., A. Polverino, E. Chang, M. Wigler, and J. Ruderman. 1992. Oncogenic Ras triggers the activation of 42 kDa mitogen-activated protein kinase in extracts of quiescent Xenopus oocytes. Proc. Natl. Acad. Sci. USA 89: 9831–9835.
  • Shibuya, E., and J. Ruderman. 1993. Mos induces the in vitro activation of mitogen-activated protein kinases in lysates of frog oocytes and mammalian somatic cells. Mol. Biol. Cell 4: 781–790.
  • Smith, L. 1989. The induction of oocyte maturation: transmembrane signalling events and regulation of the cell cycle. Development 107: 685–699.
  • Solomon, M. 1993. Activation of the various cyclin/cdc2 protein kinases. Curr. Opin. Cell Biol. 5: 180–186.
  • Solomon, M., T. Lee, and M. Kirschner. 1992. Role of phosphorylation in p34cdc2 activation: identification of an activating kinase. Mol. Biol. Cell 3: 13–27.
  • Verlhac, M.-H., H. D. Pennart, B. Maro, M. H. Cobb, and H. J. Clarke. 1993. MAP kinase becomes stably activated at metaphase and is associated with microtubule-organizing centers during meiotic maturation of mouse oocytes. Dev. Biol. 158: 330–340.
  • Watanabe, N., G. F. Vande Woude, Y. Ikawa, and N. Sagata. 1988. Specific proteolysis of the c-Mos proto-oncogene product by calpain on fertilization of Xenopus eggs. Nature (London) 342: 505–511.
  • Wu, J., P. Dent, T. Jelinek, A. Wolfman, M. Weber, and T. Sturgill. 1993. Inhibition of the EGF-activated MAP kinase signaling pathway by adenosine 3′, 5′-monophosphate. Science 262: 1065–1069.
  • Yew, N., M. L. Mellini, and G. F. Vande Woude. 1992. Meiotic initiation in Xenopus by the mos protein. Nature (London) 355: 649–652.
  • Zhou, R., M. Oskarsson, R. S. Paules, N. Schulz, D. Cleveland, and G. F. Vande Woude. 1991. Ability of the c-mos product to associate with and phosphorylate tubulin. Science 251: 671–675.
  • Zhou, R., R.-L. Shen, P. Pinto da Silva, and G. F. Vande Woude. 1991. In vitro and in vivo characterization of pp39mos association with tubulin. Cell Growth Diff. 2: 257–265.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.