2
Views
5
CrossRef citations to date
0
Altmetric
Gene Expression

Flexibility and Interchangeability of Polyadenylation Signals in Saccharomyces cerevisiae

, , &
Pages 4633-4642 | Received 07 Feb 1994, Accepted 20 Apr 1994, Published online: 30 Mar 2023

Refrences

  • Abe, A., Y. Hiraoka, and T. Fukasawa. 1990. Signal sequence for generation of mRNA 3′ end in the Saccharomyces cerevisiae GAL7 gene. EMBO J. 9: 3691–3697.
  • Bennetzen, J. L., and B. D. Hall. 1982. The primary structure of the Saccharomyces cerevisiae gene for alcohol dehydrogenase I. J. Biol. Chem. 257: 3018–3025.
  • Bullock, W. O., J. M. Fernandez, and J. M. Short. 1987. XLl-Blue: a high efficiency plasmid transforming recA Escherichia coli strain with beta-galactosidase selection. BioTechniques 5: 376–378.
  • Butler, J. S., and T. Platt. 1988. RNA processing generates the mature 3′ end of yeast CYC1 messenger RNA in vitro. Science 242: 1270–1274.
  • Butler, J. S., P. P. Sadhale, and T. Platt. 1990. RNA processing in vitro produces mature 3′ ends of a variety of Saccharomyces cerevisiae mRNAs. Mol. Cell. Biol. 10: 2599–2605.
  • Chen, J., and C. Moore. 1992. Separation of factors required for cleavage and polyadenylation of yeast pre-mRNA. Mol. Cell. Biol. 12: 3470–3481.
  • Gil, A., and N. J. Proudfoot. 1984. A sequence downstream of AAUAAA is required for rabbit ß-globin mRNA 3′-end formation. Nature (London) 312: 473–474.
  • Hanahan, D. 1983. Studies on transformation of Escherichia coli with plasmids. J. Mol. Biol. 166: 557–580.
  • Heidmann, S., B. Obermaier, K. Vogel, and H. Domdey. 1992. Identification of pre-mRNA polyadenylation sites in Saccharomyces cerevisiae. Mol. Cell. Biol. 12: 4215–4229.
  • Henikoff, S., and E. H. Cohen. 1984. Sequences responsible for transcription termination on a gene segment in Saccharomyces cerevisiae. Mol. Cell. Biol. 4: 1515–1520.
  • Henikoff, S., J. D. Kelly, and E. H. Cohen. 1983. Transcription terminates in yeast distal to a control sequence. Cell 33: 607–614.
  • Hill, J. E., A. M. Myers, T. J. Koerner, and A. Tzagoloff. 1986. Yeast/E. coli shuttle vectors with multiple unique restriction sites. Yeast 2: 163–167.
  • Hou, W., R. Russnak, and T. Platt. 1994. Poly(A) site selection in the yeast Ty retroelement requires an upstream region and sequence-specific titratable factor(s) in vitro. EMBO J. 13: 446–452.
  • Hyman, L. E., S. H. Seiler, J. Whoriskey, and C. L. Moore. 1991. Point mutations upstream of the yeast ADH2 poly(A) site significantly reduce the efficiency of 3′-end formation. Mol. Cell. Biol. 11: 2004–2012.
  • Irniger, S., and G. H. Braus. 1994. Saturation mutagenesis of a polyadenylylation signal reveals a hexanucleotide element essential for mRNA 3′ end formation in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 91: 257–261.
  • Irniger, S., C. M. Egli, and G. H. Braus. 1991. Different classes of polyadenylation sites in the yeast Saccharomyces cerevisiae. Mol. Cell. Biol. 11: 3060–3069.
  • Irniger, S., H. Sanfaζon, C. M. Egli, and G. H. Braus. 1992. Different sequence elements are required for function of the cauliflower mosaic virus polyadenylation site in Saccharomyces cerevisiae compared with in plants. Mol. Cell. Biol. 12: 2322–2330.
  • Ito, H., Y. Fukuda, K. Murata, and A. Kimura. 1983. Transformation of intact yeast cells treated with alkali cations. J. Bacteriol. 153: 163–168.
  • Köhrer, K., and H. Domdey. 1991. Preparation of high molecular weight RNA. Methods Enzymol. 194: 398–405.
  • Kunkel, T. A. 1985. Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc. Natl. Acad. Sci. USA 82: 488–492.
  • McDevitt, M. A., M. J. Imperiale, H. Ali, and J. R. Nevins. 1984. Requirement of a downstream sequence for generation of a poly(A) addition site. Cell 37: 993–999.
  • McLauchlan, J., D. Gaffney, J. L. Whitton, and J. B. Clements. 1985. The consensus sequence YGTGTTYY located downstream from the AATAAA signal is required for efficient formation of mRNA 3′ termini. Nucleic Acids Res. 13: 1347–1368.
  • Melton, D. A, P. A. Krieg, M. R. Rebagliati, T. Maniatis, K. Zinn,and M. R. Green. 1984. Efficient in vitro synthesis of biologically active RNA and RNA hybridization probes from plasmids containing a bacteriophage SP6 promoter. Nucleic Acids Res. 12: 7035–7056.
  • Mogen, B. D., M. H. MacDonald, G. Leggewie, and A. G. Hunt. 1992. Several distinct types of sequence elements are required for efficient mRNA 3′ end formation in a pea rbcS gene. Mol. Cell. Biol. 12: 5406–5414.
  • Orkin, S. H., T.-C. Cheng, S. E. Antonarakis, and H. H. Kazazian. 1985. Thalassemia due to a mutation in the cleavage-polyadeny- lation signal of the human ß-globin gene. EMBO J. 4: 453–456.
  • Osborne, B. I., and L. Guarente. 1989. Mutational analysis of a yeast transcriptional terminator. Proc. Natl. Acad. Sci. USA 86: 4097–4101.
  • Proudfoot, N. J., and G. G. Brownlee. 1974. Sequence at the 3′ end of globin mRNA shows homology with immunoglobulin light chain mRNA. Nature (London) 252: 359–362.
  • Russo, P., W.-Z. Li, Z. Guo, and F. Sherman. 1993. Signals that produce 3′ termini in CYC1 mRNA of the yeast Saccharomyces cerevisiae. Mol. Cell. Biol. 13: 7836–7849.
  • Russo, P., W.-Z. Li, D. M. Hampsey, K. S. Zaret, and F. Sherman. 1991. Distinct cis-acting signals enhance 3′ endpoint formation of CYC1 mRNA in the yeast Saccharomyces cerevisiae. EMBO J. 10: 563–571.
  • Russo, P., and F. Sherman. 1989. Transcription terminates near the poly(A) site in the CYC1 gene of the yeast Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 86: 8348–8352.
  • Sadhale, P. P., and T. Platt. 1992. Unusual aspects of in vitro RNA processing in the 3′ regions of the GALI, GAL7, and GAL10 genes in Saccharomyces cerevisiae. Mol. Cell. Biol. 12: 4262–4270.
  • Wahle, E., and W. Keller. 1992. The biochemistry of 3′-end cleavage and polyadenylation of messenger RNA precursors. Annu. Rev. Biochem. 61: 419–440.
  • Zaret, K. S., and F. Sherman. 1982. DNA sequence required for efficient transcription termination in yeast. Cell 28: 563–573.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.