4
Views
6
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

An M-CAT Binding Factor and an RSRF-Related A-Rich Binding Factor Positively Regulate Expression of the α-Cardiac Myosin Heavy-Chain Gene In Vivo

&
Pages 5056-5065 | Received 07 Mar 1994, Accepted 13 May 1994, Published online: 30 Mar 2023

References

  • Anversa, P., L. Vitali-Mazza, A. Gandolfi, and A. V. Loud. 1975. Morphometry and autoradiography of early hypertrophic changes in the ventricular myocardium of the adult rat. Lab. Invest. 33:125–129.
  • Arceci, R. J., A. A. J. King, M. C. Simon, S. H. Orkin, and D. B. Wilson. 1993. Mouse GATA-4: a retinoic acid-inducible GATA-binding transcription factor expressed in endodermally derived tissues and heart. Mol. Cell. Biol. 13:2235–2246.
  • Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248–254.
  • Buttrick, P. M., M. L. Kaplan, R. N. Kitsis, and L. A. Leinwand. 1993. Distinct behavior of cardiac myosin heavy chain gene constructs in vivo. Circ. Res. 72:1211–1217.
  • Chassagne, C., C. Wisnewsky, and K. Schwartz. 1993. Antithetical accumulation of myosin heavy chain but not α-actin mRNA isoforms during early stages of pressure-overload-induced rat cardiac hypertrophy. Circ. Res. 72:857–864.
  • Dignam, J. D., R. M. Lebowitz, and R. G. Roeder. 1993. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mamalian nuclei. Nucleic Acids Res. 11:1475–1489.
  • Farrance, I. K. G. (University of California, San Francisco). 1993. Personal communication.
  • Farrance, I. K. G., J. H. Mar, and C. P. Ordahl. 1992. M-CAT binding factor is related to the SV 40 enhancer binding factor, TEF-1. J. Biol. Chem. 267:17234–17240.
  • Gorman, C. M., L. F. Moffat, and Β. Η. Howard. 1982. Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells. Mol. Cell. Biol. 2:1044–1051.
  • Gossett, L. A., D. J. Kelvin, E. A. Sternberg, and Ε. Ν. Olson. 1989. A new myocyte-specific enhancer-binding factor that recognizes a conserved element associated with multiple muscle-specific genes. Mol. Cell. Biol. 9:5022–5023.
  • Gupta, M. P., M. Gupta, R. Zak, and V. P. Sukhatme. 1991. Egr-1, a serum inducible zinc finger protein, regulates transcription of the rat cardiac α-myosin heavy chain gene. J. Biol. Chem. 266:12813–12816.
  • Gustafson, Τ. A., Β. Ε. Markham, J. J. Bahl, and E. Morkin. 1987. Thyroid hormone regulates the expression of a transfected α-myosin heavy chain fusion gene in fetal heart cells. Proc. Natl. Acad. Sci. USA 84:3122–3126.
  • Gustafson, Τ. A., Β. Ε. Markham, and Ε. Morkin. 1986. Effects of thyroid hormone on α-actin and myosin heavy chain gene expression in cardiac and skeletal muscles of the rat: measurements of mRNA content using synthetic oligonucleotide probes. Circ. Res. 59:194–201.
  • Hemsley, A., Ν. Arnheim, M. D. Toney, G. Cortopassi, and D. J. Galas. 1989. A simple method for site directed mutagenesis using polymerase chain reaction. Nucleic Acids Res. 17:6545–6551.
  • Izumo, S., A.-M. Lompre, R. Matsuoka, G. Koren, K. Schwartz, B. Nadal-Ginard, and V. Mahdavi. 1987. Myosin heavy chain messenger RNA and protein isoform transitions during cardiac hypertrophy. J. Clin. Invest. 79:970–977.
  • Izumo, S., and V. Mahdavi. 1988. Thyroid hormone receptor α isoforms generated by alternative splicing differentially activate myosin HC gene transcription. Nature (London) 334:539–542.
  • Izumo, S., B. Nadal-Ginard, and V. Mahdavi. 1986. All members of the MHC multigene family respond to thyroid hormone in a highly tissue specific manner. Science 231:597–600.
  • Kadonaga, J. T., and R. Tjian. 1986. Affinity purification of sequence-specific DNA binding proteins. Proc. Natl. Acad. Sci. USA 83:5889–5893.
  • Kariya, K., I. K. G. Farrance, and P. C. Simpson. 1993. Transcriptional enhancer factor-1 in cardiac myocytes interacts with an α1-adrenergic-and β-protein kinase C-inducible element in the rat β-MHC promoter. J. Biol. Chem. 268:26658–26662.
  • Lin, H., M. Parmacek, G. Morle, S. Boiling, and J. M. Leiden. 1990. Expression of recombinant genes in myocardium in vivo after direct injection of DNA. Circulation 82:2217–2221.
  • Lompre, A.-M., B. Nadal-Ginard, and V. Mahdavi. 1984. Expression of the cardiac ventricular α- and β-myosin heavy chain genes is developmentally and hormonally regulated. J. Biol. Chem. 259:6437–6446.
  • Lyons, G. E., S. Schiaffino, D. Sassoon, P. Barton, and M. Buckingham. 1990. Developmental regulation of myosin gene expression in mouse cardiac muscle. J. Cell Biol. 111:2427–2436.
  • Mahdavi, V., A. P. Chambers, and B. Nadal-Ginard. 1984. Cardiac α- and β-myosin heavy chain genes are organized in tandem. Proc. Natl. Acad. Sci. USA 81:2626–2630.
  • Mar, J. H., and C. P. Ordahl. 1988. A conserved CATTCCT motif is required for skeletal muscle-specific activity of the cardiac troponin Τ promoter. Proc. Natl. Acad. Sci. USA 85:6404–6408.
  • Mar, J. H., and C. P. Ordahl. 1990. M-CAT binding factor, a novel trans-acting factor governing muscle-specific transcription. Mol. Cell. Biol. 10:4271–4283.
  • Markham, B. E., J. J. Bahl, T. A. Gustafson, and E. Morkin. 1987. Interaction of a protein factor within a thyroid hormone sensitive region of rat α-myosin heavy chain gene. J. Biol. Chem. 262:12856–12862.
  • Markham, B. E., R. W. Tsika, J. J. Bahl, P. G. Anderson, and E. Morkin. 1990. An anti-sense c-erbA clone inhibits thyroid hormone-induced expression from the α-myosin heavy chain promoter. J. Biol. Chem. 265:6489–6493.
  • Martin, J. F., J. M. Miano, C. M. Hustad, N. G. Copeland, N. A. Jenkins, and Ε. Ν. Olson. 1994. A mef2 gene that generates a muscle-specific isoform via alternative mRNA splicing. Mol. Cell. Biol. 14:1647–1656.
  • Maxam, A. M., and W. Gilbert. 1980. Sequencing DNA by labeling the end and breaking at bases: DNA segments, end-labels, cleavage reactions polyacrylamide gels, and strategies. Methods Enzymol. 65:499–560.
  • McDermott, J. C., M. C. Cardoso, Y.-T. Yu, V. Andres, D. Leifer, D. Krainc, S. A. Lipton, and B. Nadal Ginard. 1993. hMEF2C gene encodes skeletal muscle- and brain-specific transcription factors. Mol. Cell. Biol. 13:2564–2577.
  • Molkentin, J. D., R. S. Brogan, S. M. Jobe, and Β. Ε. Markham. 1993. Expression of the α-myosin heavy chain gene in the heart is regulated in part by an Ε-box dependent mechanism. J. Biol. Chem. 268:2602–2609.
  • Molkentin, J. D., and Β. Ε. Markham. 1993. Myocyte-specific enhancer-binding factor (MEF-2) regulates α-cardiac myosin heavy chain gene expression in vitro and in vivo. J. Biol. Chem. 268:19512–19520.
  • Molkentin, J. D., and Β. Ε. Markham. Unpublished results.
  • Morkin, E., J. J. Bahl, and Β. Ε. Markham. 1989. Control of cardiac myosin heavy chain gene expression by thyroid hormone, p. 381–389. In L. Kedes, and F. Stockdale (ed.), Cellular and molecular biology of muscle development. Alan R. Liss, Inc., New York.
  • Ojamaa, K., and I. Klein. 1991. Thyroid hormone regulation of alpha-myosin heavy chain promoter activity assessed by in vivo DNA transfer in rat heart. Biochem. Biophys. Res. Commun. 179:1269–1275.
  • Pollock, R., and R. Treisman. 1991. Human SRF-related proteins: DNA binding properties and potential regulatory targets. Genes Dev. 5:2327–2341.
  • Seidman, C. E., D. W. Wong, J. A. Jarcho, K. D. Bloch, and J. G. Seidman. 1988. cis-acting sequences that modulate atrial natriuretic factor gene expression. Proc. Natl. Acad. Sci. USA 85:4104–4108.
  • Shimizu, Ν., Ε. Dizon, and R. Zak. 1992. Both muscle-specific and ubiquitous nuclear factors are required for muscle-specific expression of the myosin heavy-chain β gene in cultured cells. Mol. Cell. Biol. 12:619–630.
  • Shimizu, N., G. Smith, and S. Izumo. 1993. Both a ubiquitous factor mTEF-1 and a distinct muscle-specific factor bind to the M-CAT motif of the myosin heavy chain β gene. Nucleic Acids Res. 17:4103–4110.
  • Sternberg, Ε. A., G. Spizz, W. M. Perry, D. Vizard, T. Weil, and Ε. Ν. Olson. 1988. Identification of upstream and intragenic regulatory elements that confer cell-type-restricted and differentiation-specific expression on the muscle creatine kinase gene. Mol. Cell. Biol. 8:2896–2909.
  • Sturm, R., T. Baumrukef, R. Franza, Jr., and W. Herr. 1987. A 100-kD HeLa cell octamer binding protein (OBP100) interacts differently with two separate octamer related sequences within the SV40 enhancer. Genes Dev. 1:1147–1160.
  • Subramaniam, A., W. K. Jones, J. Gulick, S. Wert, J. Neumann, and J. Robbins. 1991. Tissue-specific regulation of the α-myosin heavy chain gene promoter in transgenic mice. J. Biol. Chem. 266:24613–24620.
  • Thompson, W. R., B. Nadal-Ginard, and V. Mahdavi. 1991. A myoD1-independent muscle-specific enhancer controls the expression of the β-myosin heavy chain gene in skeletal and cardiac muscle cells. J. Biol. Chem. 266:22678–22688.
  • Tsika, R. W., J. J. Bahl, L. A. Leinwand, and E. Morkin. 1990. Thyroid hormone regulates expression of a transfected human α-myosin heavy-chain fusion gene in fetal rat heart cells. Proc. Natl. Acad. Sci. USA 87:379–383.
  • Wolff, J. A., R. W. Malone, P. Williams, W. Chong, G. Acsadi, A. Jani, and P. L. Feigner. 1990. Direct gene transfer into mouse muscle in vivo. Science 247:1465–1468.
  • Yu, Y.-T., R. E. Breitbart, L. B. Smoot, Y. Lee, V. Mahdavi, and B. Nadal-Ginard. 1992. Human myocyte-specific enhancer factor 2 comprises a group of tissue-restricted MADS box transcription factors. Genes Dev. 6:1783–1798.
  • Zakut, R., M. Shani, D. Givol, S. Neuman, D. Yaffe, and U. Nudel. 1982. Nucleotide sequence of the rat skeletal muscle actin gene. Nature (London) 298:857–859.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.