0
Views
29
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

Ectopic Expression of Cyclin D1 Prevents Activation of Gene Transcription by Myogenic Basic Helix-Loop-Helix Regulators

, &
Pages 5259-5267 | Received 24 Feb 1994, Accepted 24 May 1994, Published online: 30 Mar 2023

References

  • Ajchenbaum, F., K. Ando, J. DeCaprio, and J. Griffin. 1993. Independent regulation of human D-type cyclin gene expression during G1 phase in primary human Τ lymphocytes. J. Biol. Chem. 267:4113–4119.
  • Bader, D., T. Masaki, and D. Fischman. 1982. Immunochemical analysis of myosin heavy chain during avian myogenesis in vivo and in vitro. J. Cell Biol. 95:763–770.
  • Baldin, V., J. Lukas, M. Marcote, M. Pagano, and G. Draetta. 1993. Cyclin D1 is a nuclear protein required for cell cycle progression in G1 Genes Dev. 7:812–821.
  • Benezra, R., R. Davis, D. Lockshon, D. Turner, and H. Weintraub. 1990. The protein Id: a negative regulator of helix-loop-helix DNA binding proteins. Cell 61:49–59.
  • Bengal, E., L. Ransone, R. Scharfman, V. Dwarki, S. Tapscott, H. Weintraub, and I. Verma. 1992. Functional antagonism between c-jun and myoD proteins: a direct physical association. Cell 68:507–519.
  • Blau, H., C.-P. Chiu, and C. Webster. 1983. Cytoplasmic activation of human nuclear genes in stable heterokaryons. Cell 32:1171–1180.
  • Braun, T., E. Bober, G. Buschhausen-Denker, E. Tannisch, and H. Arnold. 1989. A novel human muscle factor related to but distinct from MyoD1 induces myogenic conversion to 10T1/2 fibroblasts. EMBO J. 8:701–709.
  • Braun, T., E. Bober, B. Winter, N. Rosenthal, and H. Arnold. 1990. Myf-6, a new member of the human gene family of myogenic determination factors: evidence for a gene cluster on chromosome 11. EMBO J. 9:821–831.
  • Brennan, T., D. Edmondson, L. Li, and E. Olson. 1991. Transforming growth factor β represses the actions of myogenin through a mechanism independent of DNA binding. Proc. Natl. Acad. Sci. USA 88:3822–3826.
  • Buskin, J. N., and S. D. Hauschka. 1989. Identification of a myocyte nuclear factor that binds to the muscle-specific enhancer of the mouse muscle creatine kinase gene. Mol. Cell. Biol. 9:2627–2640.
  • Clegg, C., T. Linkhart, B. Olwin, and S. Hauschka. 1987. Growth factor control of skeletal muscle differentiation: commitment to terminal differentiation occurs in G1 phase and is repressed by fibroblast growth factor. J. Cell Biol. 105:949–956.
  • Cocks, B., G. Vairo, S. Bodrug, and J. Hamilton. 1992. Suppression of growth factor-induced CYL1 cyclin gene expression by antiproliferative agents. J. Biol. Chem. 267:12307–12310.
  • Cole, F., T. Fasy, S. Rao, M. DePeralta, and D. Kohtz. 1993. Growth factors that repress myoblast differentiation sustain phosphorylation of a specific site on histone H1. J. Biol. Chem. 268:1580–1588.
  • Crescenzi, M., T. Fleming, A. Lassar, H. Weintraub, and S. Aaronson. 1990. MyoD induces growth arrest independently of differentiation in normal and transformed cells. Proc. Natl. Acad. Sci. USA 87:8442–8446.
  • Davis, R., H. Weintraub, and A. Lassar. 1987. Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell 51:987–1000.
  • Dowdy, S., P. Hinds, K. Louie, S. Reed, A. Arnold, and R. Weinberg. 1993. Physical interaction of the retinoblastoma protein with human D cyclins. Cell 73:499–511.
  • Ewen, M., H. Sluss, C. Sherr, H. Matsushime, J. Kato, and D. Livingston. 1993. Functional interactions of retinoblastoma protein with mammalian D-type cyclins.. Cell 73:487–497.
  • Goodrich, D., N. Wang, Y. Qian, E. Lee, and W.-H. Lee. 1991. The retinoblastoma gene product regulates progress through the G, phase of the cell cycle. Cell 67:293–303.
  • Gorman, C., G. Merlino, M. Willingham, I. Pastan, and B. Howard. 1982. The Rous sarcoma virus long terminal repeat is a strong promoter when introduced into a variety of eukaryotic cells by DNA-mediated transfection. Proc. Natl. Acad. Sci. USA 79:6777–6781.
  • Gorman, C. M., L. F. Moffat, and Β. Η. Howard. 1982. Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells. Mol. Cell. Biol. 2:1044–1051.
  • Gu, W., J. Schneider, G. Condorelli, S. Kaushal, V. Mahdavi, and B. Nadal-Ginard. 1993. Interaction of myogenic factors and the retinoblastoma protein mediates muscle cell commitment and differentiation. Cell 72:309–324.
  • Hartwell, L., and T. Weinert. 1989. Checkpoints: controls that ensure the order of cell cycle events. Science 246:629–634.
  • Hinds, P., S. Mittnacht, V. Dulic, A. Arnold, S. Reed, and R. Weinberg. 1992. Regulation of retinoblastoma protein functions by ectopic expression of human cyclins. Cell 71:993–1006.
  • Holloway, S., M. Glotzer, R. King, and A. Murray. 1993. Anaphase is initiated by proteolysis rather than by the inactivation of maturation-promoting factor. Cell 73:1393–1402.
  • Hu, J.-S., E. N. Olson, and R. E. Kingston. 1992. HEB, a helix-loop-helix protein related to E2A and ITF2 that can modulate the DNA-binding ability of myogenic regulatory factors. Mol. Cell. Biol. 12:1031–1042.
  • Inaba, T., H. Matsushime, M. Valentine, M. Roussel, C. Sherr, and A. Look. 1992. Genomic organization, chromosomal localization, and independent expression of human CYL (cyclin D) genes. Genomics 13:565–574.
  • Jaynes, J. B., J. E. Johnson, J. N. Buskin, C. L. Gartside, and S. D. Hauschka. 1988. The muscle creatine kinase gene is regulated by multiple upstream elements, including a muscle-specific enhancer. Mol. Cell. Biol. 8:62–70.
  • Jen, Υ., Η. Weintraub, and R. Benezra. 1992. Overexpression of Id protein inhibits the muscle differentiation program: in vivo association of Id with E2A proteins. Genes Dev. 6:1466–1479.
  • Kato, J., H. Matsushime, S. Hiebert, M. Ewen, and C. Sherr. 1993. Direct binding of cyclin D to the retinoblastoma gene product (pRb) and pRb phosphorylation by the cyclin D-dependent kinase CDK4. Genes Dev. 7:331–342.
  • Kato, J., and C. Sherr. 1993. Inhibition of granulocyte differentiation by G1 cyclins D2 and D3 but not D1. Proc. Natl. Acad. Sci. USA 90:11513–11517.
  • Kim, S., K. Kim, S. Tapscott, T. Winokur, K. Park, H. Fujika, H. Weintraub, and A. Roberts. 1992. Inhibition of protein phosphatases blocks myogenesis by first altering MyoD binding activity. J. Biol. Chem. 267:15140–15145.
  • Koppe, R., P. Hallauer, G. Karpati, and K. Hastings. 1989. cDNA clone and expression analysis of rodent fast and slow skeletal muscle troponin I mRNAs. J. Biol. Chem. 264:14237–14333.
  • Lassar, A., R. Davis, W. Wright, T. Kadesch, C. Murre, A. Voronova, D. Baltimore, and H. Weintraub. 1991. Functional activity of myogenic HLH proteins requires hetero-oligomerization with E12/E47-like proteins in vivo. Cell 66:305–315.
  • Lathrop, Β., Κ. Thomas, and L. Glaser. 1985. Control of myogenic differentiation by fibroblast growth factor is mediated by position of the G1 phase of the cell cycle. J. Cell Biol. 103:1799–1805.
  • Lew, D., V. Dulic, and S. Reed. 1991. Isolation of three novel human cyclins by rescue of G1 cyclin (Cln) function in yeast. Cell 66:1197–1206.
  • Li, L., J.-C. Chambard, M. Karin, and E. Olson. 1992. fos and jun repress transcriptional activation by myogenin and MyoD: the amino terminus of jun can mediate repression. Genes Dev. 6:676–689.
  • Li, L., J. Zhou, G. James, R. Heller-Harrison, M. Czech, and E. Olson. 1992. FGF inactivates myogenic helix-loop-helix proteins through phosphorylation of a conserved protein kinase C site in their DNA-binding domains. Cell 71:1181–1194.
  • Marshall, C. 1991. Tumor suppressor genes. Cell 64:313–326.
  • Massague, J., S. Cheipetz, T. Endo, and B. Nadal-Ginard. 1986. Type β transforming growth factor is an inhibitor of myogenic differentiation. Proc. Natl. Acad. Sci. USA 83:8206–8210.
  • Matsushime, H., M. Ewen, D. Strom, J. Kato, S. Hanks, M. Roussel, and C. Sherr. 1992. Identification and properties of an atypical catalytic subunit (p34PSKJ3/cdk4) for mammalian D-type Gj cyclins. Cell 71:323–334.
  • Matsushime, H., M. Roussel, R. Ashmun, and C. Sherr. 1991. Novel mammalian cyclin (CYL) genes expressed during G1 Cold Spring Harbor Symp. Quant. Biol. 56:69–74.
  • Matsushime, H., M. Roussel, R. Ashmun, and C. Sherr. 1991. Colony stimulating factor 1 regulates novel cyclins during the G1 phase of the cell cycle. Cell 65:701–813.
  • Miner, J., and B. Wold. 1990. Herculin, a fourth member of the MyoD family of myogenic regulatory genes. Proc. Natl. Acad. Sci. USA 87:1089–1093.
  • Minshull, J., R. Golsteyn, C. Hill, and T. Hunt. 1990. The A- and B-type cyclin associated cdc2 kinases in Xenopus turn on and off at different times in the cell cycle. EMBO J. 9:2865–2875.
  • Motokura, T., T. Bloom, H. Kim, H. Juppner, J. Ruderman, H. Kronenberg, and A. Arnold. 1991. A novel cyclin encoded by a bcl 1-linked candidate oncogene. Nature (London) 350:512–515.
  • Mueller, P., and B. Wold. 1989. In vivo footprinting of a muscle-specific enhancer by ligation mediated PCR. Science 246:780–786.
  • Neuhold, L., and B. Wold. 1993. HLH forced dimers: tethering MyoD to E47 generates a dominant positive myogenic factor insulated from negative regulation by Id. Cell 74:1033–1042.
  • Norbury, C., and P. Nurse. 1992. Animal cell cycles and their control. Annu. Rev. Biochem. 61:441–470.
  • Nurse, P. 1990. Universal control mechanism regulating cell cycle timing of M-phase. Nature (London) 344:503–508.
  • Olson, E. 1992. Interplay between proliferation and differentiation within the myogenic lineage. Dev. Biol. 154:261–272.
  • Olson, E., E. Steinberg, J. Hu, G. Spizz, and C. Wilcox. 1986. Regulation of myogenic differentiation by type β transforming growth factor. J. Cell Biol. 103:1799–1805.
  • Piechaczyk, M., J. Blanchard, L. Marty, C. Dani, F. Panabieres, S. Sabouty, P. Fort, and P. Jeanteur. 1984. Post-transcriptional regulation of glyceraldehyde-3-phosphate dehydrogenase gene expression in rat tissues. Nucleic Acids Res. 12:6951–6963.
  • Pines, J., and T. Hunter. 1989. Isolation of a human cyclin cDNA: evidence for cyclin mRNA and protein regulation in the cell cycle and for interaction with p34cdc2. Cell 58:833–846.
  • Pines, J., and T. Hunter. 1990. Human cyclin A is adenovirus E1A-associated protein p60 and behaves differently from cyclin B. Nature (London) 346:760–763.
  • Quelle, D., R. Ashmun, S. Shurtleff, J. Kato, D. Bar-Sagi, M. Roussel, and C. Sherr. 1993. Overexpression of mouse D-type cyclins accelerates G1 phase in rodent fibroblasts. Genes Dev. 7:1559–1571.
  • Rao, S., and D. Kohtz. Positive and negative regulation of D-type cyclins by bFGF and TGF-β. Submitted for publication.
  • Rhodes, S., and S. Koniecszny. 1989. Identification of MRF4: a new member of the muscle regulatory gene family. Genes Dev. 3:2050–2061.
  • Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Sartorelli, V., K. Webster, and L. Kedes. 1990. Muscle-specific expression of the cardiac α-actin gene requires MyoD1, CArG-box binding factors, and Sp1. Genes Dev. 4:1811–1822.
  • Sherr, C. 1993. Mammalian G1 cyclins. Cell 73:1059–1065.
  • Sorrentino, V., R. Pepperkok, R. Davis, W. Ansorge, and L. Philipson. 1990. Cell proliferation inhibited by MyoD1 independently of myogenic differentiation. Nature (London) 345:813–815.
  • Spizz, G., D. Roman, A. Strauss, and E. Olson. 1986. Serum and fibroblast growth factor inhibit myogenic differentiation through a mechanism dependent on protein synthesis and independent of proliferation. J. Biol. Chem. 261:9483–9488.
  • Walker, D., and J. Mailer. 1991. Role for cyclin A in the dependence of mitosis on completion of DNA replication. Nature (London) 354:314–317.
  • Weinberg, R. 1991. Tumor suppressor genes. Science 254:1138–1146.
  • Weintraub, H., R. Davis, D. Lockshon, and A. Lassar. 1990. MyoD binds cooperatively to two sites in a target enhancer sequence: occupancy of two sites is required for activation. Proc. Natl. Acad. Sci. USA 87:5623–5627.
  • Weintraub, H., R. Davis, S. Tapscott, M. Thayer, M. Krause, R. Benezra, T. Blackwell, D. Turner, R. Rupp, S. Hollenberg, Y. Zhuang, and A. Lassar. 1991. The MyoD gene family: nodal point during specification of the muscle cell lineage. Science 251:761–765.
  • Weintraub, H., V. Dwarki, I. Verma, R. Davis, S. Hollenberg, L. Snider, A. Lassar, and S. Tapscott. 1991. Muscle-specific transcriptional activation by MyoD. Genes Dev. 5:1377–1386.
  • Weintraub, H., S. Tapscott, R. Davis, M. Thayer, M. Adam, A. Lassar, and A. Miller. 1989. Activation of muscle-specific genes in pigment, nerve, fat, liver, and fibroblast cell lines by forced expression of MyoD. Proc. Natl. Acad. Sci. USA 86:5434–5438.
  • Wentworth, B., M. Donoghue, J. Engert, E. Berglund, and N. Rosenthal. 1991. Paired MyoD-binding sites regulate myosin light chain gene expression. Proc. Natl. Acad. Sci. USA 88:1242–1246.
  • Won, K., Y. Xiong, D. Beach, and M. Gilman. 1992. Growth-regulated expression of D-type cyclin genes in human diploid fibroblasts. Proc. Natl. Acad. Sci. USA 89:9910–9914.
  • Wright, W., D. Sassoon, and V. Lin. 1989. Myogenin, a factor regulating myogenesis, has a domain homologous to MyoDl. Cell 56:607–617.
  • Xiong, Y., T. Connolly, B. Futcher, and D. Beach. 1991. Human D-type cyclins. Cell 65:691–699.
  • Xiong, Υ., Η. Zhang, and D. Beach. 1992. D type cyclins associate with multiple protein kinases and the DNA and replication repair factor PCNA. Cell 71:505–514.
  • Xiong, Υ., Η. Zhang, and D. Beach. 1993. Subunit rearrangement of the cyclin-dependent kinases is associated with cellular transformation. Genes Dev. 7:1571–1583.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.