13
Views
23
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

Identification of Functional Domains of the Aryl Hydrocarbon Receptor Nuclear Translocator Protein (ARNT)

, , &
Pages 6075-6086 | Received 18 Apr 1994, Accepted 18 Jun 1994, Published online: 30 Mar 2023

REFERENCES

  • Benezra, R., R. L. Davis, D. Lockshon, D. L. Turner, and H. Weintraub. 1990. The protein Id: a negative regulator of helix-loop-helix DNA binding proteins. Cell 61:49–59.
  • Billaud, M., K. J. Isselbacher, and R. Bernards. 1993. A dominant-negative mutant of Max that inhibits sequence-specific DNA binding by Myc proteins. Proc. Natl. Acad. Sci. USA 90:2739–2743.
  • Blackwood, E. M., and R. N. Eisenmann. 1991. Max: a helix-loop-helix zipper protein that forms a sequence-specific DNA-binding complex with Myc. Science 251:1211–1217.
  • Burbach, K. M., A. Poland, and C. A. Bradfield. 1992. Cloning of the Ah-receptor cDNA reveals a distinctive ligand-activated transcription factor. Proc. Natl. Acad. Sci. USA 89:8185–8189.
  • Chen, C., and H. Okayama. 1987. High-efficiency transformation of mammalian cells by plasmid DNA. Mol. Cell. Biol. 7:2745–2752.
  • Couture, L. A., B. D. Abbott, and L. S. Birnbaum. 1990. A critical review of the developmental toxicity and teratogenicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin: recent advances toward understanding the mechanism. Teratology 42:619–627.
  • Dalman, F. C., R. J. Koenig, G. H. Perdew, E. Massa, and W. B. Pratt. 1990. In contrast to the glucocorticoid receptor, the thyroid hormone receptor is translated in the DNA binding state and is not associated with hsp90. J. Biol. Chem. 265:3615–3618.
  • Davis, L. J., and T. D. Halazonetis. 1993. Both the helix-loop-helix and the leucine zipper motifs of c-Myc contribute to its dimerization specificity with Max. Oncogene 8:125–132.
  • Davis, R. L., P.-F. Cheng, A. B. Lassar, and H. Weintraub. 1990. The MyoD DNA binding domain contains a recognition code for muscle-specific gene activation. Cell 60:733–746.
  • Denis, M., S. Cuthill, A. C. Wikstrom, L. Poellinger, and J. K. Gustafsson. 1988. Association of the dioxin receptor with the Mr 90,000 heat shock protein: a structural kinship with the glucocorticoid receptor. Biochem. Biophys. Res. Commun. 155:801–807.
  • Denison, M. S., L. M. Vella, and A. B. Okey. 1986. Structure and function of the Ah receptor for 2,3,7,8-tetrachlorodibenzo-p-dioxin: species difference in molecular properties of the receptors from mouse and rat hepatic cytosols. J. Biol. Chem. 261:3987–3995.
  • Dolwick, K. M., J. V. Schmidt, L. A. Carver, H. I. Swanson, and C. A. Bradfield. 1993. Cloning and expression of a human Ah receptor cDNA. Mol. Pharmacol. 44:911–917.
  • Dolwick, K. M., H. I. Swanson, and C. A. Bradfield. 1993. In vitro analysis of Ah receptor domains involved in ligand-activated DNA recognition. Proc. Natl. Acad. Sci. USA 90:8566–8570.
  • Ema, M., K. Sogawa, N. Watanabe, Y. Chujoh, N. Matsushita, O. Gotoh, Y. Funae, and Y. Fujii-Kuriyama. 1992. cDNA cloning and structure of mouse putative Ah receptor. Biochem. Biophys. Res. Commun. 184:246–253.
  • Ferre-D'Amare, A. R., G. C. Prendergast, E. B. Ziff, and S. K. Burley. 1993. Recognition by Max of its cognate DNA through a dimeric b/HLH/Z domain. Nature (London) 363:38–44.
  • Fujisawa-Sehara, A., K. Sogawa, M. Yamane, and Y. Fujii-Kuriyama. 1987. Characterization of xenobiotic responsive elements upstream from the drug-metabolizing cytochrome P-450c gene: a similarity to glucocorticoid regulatory elements. Nucleic Acids Res. 15:4179–4191.
  • Galili, G., E. E. Kawata, R. E. Cuellar, L. D. Smith, and B. A. Larkins. 1986. Synthetic oligonucleotide tails inhibit in vitro and in vivo translation of SP6 transcripts of maize zein cDNA clones. Nucleic Acids Res. 14:1511–1524.
  • Greenlee, W. F., R. Osborne, K. M. Dold, L. G. Hudson, M. J. Young, and W. A. Toscano, Jr. 1987. Altered regulation of epidermal cell proliferation and differentiation by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Rev. Biochem. Toxicol. 8:1–35.
  • Hankinson, O. 1991. Selection procedures both for and against cells possessing cytochrome P450IA1-dependent aryl hydrocarbon hydroxylase activity. Methods Enzymol. 206:381–400.
  • Hoffman, E. C., H. Reyes, F.-F. Chu, F. Sander, L. H. Conley, B. A. Brooks, and O. Hankinson. 1991. Cloning of a factor required for the activity of the Ah (dioxin) receptor. Science 252:954–958.
  • Hu, Y.-F., B. Luscher, A. Admon, N. Mermod, and R. Tjian. 1990. Transcription factor AP-4 contains multiple dimerization domains that regulate dimer specificity. Genes Dev. 4:1741–1752.
  • Hua, X., C. Yokoyama, J. Wu, M. R. Briggs, M. S. Brown, J. L. Goldstein, and X. Wang. 1993. SREBP-2, a second basic-helix-loop-helix-leucine zipper protein that stimulates transcription by binding to a sterol regulatory element. Proc. Natl. Acad. Sci. USA 90:11603–11607.
  • Huang, Z. J., I. Edery, and M. Rosbash. 1993. PAS is a dimerization domain common to Drosophila Period and several transcription factors. Nature (London) 364:259–262.
  • Itoh, N., S. Yonehara, J. Schreurs, D. M. Gorman, K. Maruyama, A. Ishii, I. Yahara, K.-I. Arai, and A. Miyajima. 1990. Cloning of an interleukin-3 receptor gene: a member of a distinct receptor gene family. Science 247:324–327.
  • Itoh, S., and T. Kamataki. 1993. Human Ah receptor cDNA: analysis for highly conserved sequences. Nucleic Acids Res. 21:3578.
  • Kozak, M. 1989. The scanning model for translation: an update. J. Cell Biol. 108:229–241.
  • Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (London) 227:680–685.
  • Lusska, A., E. Shen, and J. P. Whitlock, Jr. 1993. Analysis of protein-DNA interactions at a dioxin-responsive enhancer. J. Biol. Chem. 268:6575–6580.
  • Mason, G. G. F., A.-M. Witte, M. L. Whitelaw, C. Antonsson, J. McGuire, A. Wilhelmsson, L. Poellinger, and J.-A. Gustafsson. 1994. Purification of the DNA binding form of dioxin receptor: role of the Arnt cofactor in regulation of dioxin receptor function. J. Biol. Chem. 269:4438–4449.
  • Matsushita, N., K. Sogawa, M. Ema, A. Yoshida, and Y. Fujii-Kuriyama. 1993. A factor binding to the xenobiotic responsive element (XRE) of P-4501A1 gene consists of at least two helix-loop-helix proteins, Ah receptor and Arnt. J. Biol. Chem. 268:21002–21006.
  • Murre, C., and D. Baltimore. 1992. The helix-loop-helix motif: structure and function, p. 861–879. In S. L. McKnight, and K. R. Yamamoto (ed.), Transcriptional regulation. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Murre, C., P. Schonleber McCaw, and D. Baltimore. 1989. A new DNA binding and dimerization motif in immunoglobulin enhancer binding, daughterless, MyoD, and myc proteins. Cell 56:777–783.
  • Nakamaye, K. L., and F. Eckstein. 1986. Inhibition of restriction endonuclease Nci I cleavage by phosphorothioate groups and its application to oligonucleotide-directed mutagenesis. Nucleic Acids Res. 14:9679–9698.
  • Nambu, J. R., J. O. Lewis, K. A. Wharton, and S. T. Crews. 1991. The Drosophila single-minded gene encodes a helix-loop-helix protein that acts as a master regulator of CNS midline development. Cell 67:1157–1167.
  • Nebert, D. W., A. Puga, and V. Vasiliou. 1993. Role of the Ah receptor and the dioxin-inducible [Ah] gene battery in toxicity, cancer, and signal transduction. Ann. N. Y. Acad. Sci. 685:624–640.
  • Okey, A. B., D. S. Riddick, and P. A. Harper. 1994. The Ah receptor: mediator of the toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and related compounds. Toxicol. Lett. 70:1–22.
  • Perdew, G. H. 1988. Association of the Ah receptor with the 90-kDa heat shock protein. J. Biol. Chem. 263:13802–13805.
  • Perdew, G. H. 1991. Comparison of the nuclear and cytosolic forms of the Ah receptor from Hepa lclc7 cells: charge heterogeneity and ATP binding properties. Arch. Biochem. Biophys. 291:284–290.
  • Perdew, G. H. 1992. Chemical cross-linking of the cytosolic and nuclear forms of the Ah receptor in hepatoma cell line lclc7. Biochem. Biophys. Res. Commun. 182:55–62.
  • Pongratz, I., G. G. Mason, and L. Poellinger. 1992. Dual roles of the 90-kDa heat shock protein hsp90 in modulating functional activities of the dioxin receptor. Evidence that the dioxin receptor functionally belongs to a subclass of nuclear receptors which require hsp90 both for ligand binding activity and repression of intrinsic DNA binding activity. J. Biol. Chem. 267:13728–13734.
  • Probst, M. R., S. Reisz-Porszasz, R. V. Agbunag, M. S. Ong, and O. Hankinson. 1993. Role of the aryl hydrocarbon (Ah) receptor nuclear translocator protein (ARNT) in aryl hydrocarbon (dioxin) receptor action. Mol. Pharmacol. 44:511–518.
  • Prokipcak, R. D., and A. B. Okey. 1988. Physicochemical characterization of the nuclear form of Ah receptor from mouse hepatoma cells exposed in culture to 2,3,7,8-tetrachlorodibenzo-p-dioxin. Arch. Biochem. Biophys. 267:811–828.
  • Reddy, C. D., P. Dasgupta, P. Saikumar, H. Dudek, F. J. Rauscher III, and E. P. Reddy. 1992. Mutational analysis of Max: role of basic, helix-loop-helix/leucine zipper domains in DNA binding, dimerization and regulation of Myc-mediated transcriptional activation. Oncogene 7:2085–2092.
  • Reyes, H., S. Reisz-Porszasz, and O. Hankinson. 1992. Identification of the Ah receptor nuclear translocator protein (Arnt) as a component of the DNA binding form of the Ah receptor. Science 256:1193–1195.
  • Riedel, H., C. Kondor-Koch, and H. Garoff. 1984. Cell surface expression of fusogenic vesicular stomatitis virus G. EMBO J. 3:1477–1483.
  • Roman, C., A. G. Matera, C. Cooper, S. Artandi, S. Blain, D. C. Ward, and K. Calame. 1992. mTFE3, a X-linked transcriptional activator containing basic helix-loop-helix and zipper domains, utilizes the zipper to stabilize both DNA and binding and multim-erization. Mol. Cell. Biol. 12:817–827.
  • Shu, H. P., D. J. Paustenbach, and F. J. Murray. 1987. A critical evaluation of the use of mutagenesis, carcinogenesis, and tumor promotion data in a cancer risk assessment of 2,3,7,8-tetrachlo-rodibenzo-p-dioxin. Regul. Toxicol. Pharmacol. 7:57–88.
  • Swanson, H. L., and C. A. Bradfield. 1993. The AH-receptor: genetics, structure and function. Pharmacogenetics 3:213–230.
  • Voronova, A., and D. Baltimore. 1990. Mutations that disrupt DNA binding and dimer formation in the E47 helix-loop-helix protein map to distinct domains. Proc. Natl. Acad. Sci. USA 87:4722–4726.
  • Watson, A. J., and O. Hankinson. 1992. Dioxin and Ah receptor-dependent protein binding to xenobiotic responsive elements and G-rich DNA studied by in vivo footprinting. J. Biol. Chem. 266:6874–6878.
  • Whitelaw, M., I. Pongratz, A. Wilhelmsson, J. A. Gustafsson, and L. Poellinger. 1993. Ligand-dependent recruitment of the Arnt coregulator determines DNA recognition by the dioxin receptor. Mol. Cell. Biol. 13:2504–2514.
  • Whitelaw, M. L., M. Gottlicher, J. A. Gustafsson, and L. Poellinger. 1993. Definition of a novel ligand binding domain of a nuclear bHLH receptor: co-localization of ligand and hsp90 binding activities within the regulable inactivation domain of the dioxin receptor. EMBO J. 12:4169–4179.
  • Wilhelmsson, A., S. Cuthill, M. Denis, A. C. Wikstrom, J. A. Gustafsson, and L. Poellinger. 1990. The specific DNA binding activity of the dioxin receptor is modulated by the 90 kd heat shock protein. EMBO J. 9:69–76.
  • Yokota, T., T. Otsuka, T. Mosmann, J. Banchereau, T. DeFrance, D. Blanchard, J. E. De Vries, F. Lee, and K. Arai. 1986. Isolation and characterization of a human interleukin cDNA clone, homologous to mouse B-cell stimulatory factor 1, that expresses B-cell-and T-cell-stimulating activities. Proc. Natl. Acad. Sci. USA 83:5894–5898.
  • Yokoyama, C., X. Wang, M. R. Briggs, A. Admon, J. Wu, X. Hua, J. L. Goldstein, and M. S. Brown. 1993. SREBP-1, a basic-helix-loop-helix-leucine zipper protein that controls transcription of the low density lipoprotein receptor gene. Cell 75:187–197.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.