1
Views
17
CrossRef citations to date
0
Altmetric
Gene Expression

Position Independence and Proper Developmental Control of γ-Globin Gene Expression Require both a 5′ Locus Control Region and a Downstream Sequence Element

&
Pages 6087-6096 | Received 11 Apr 1994, Accepted 23 Jun 1994, Published online: 30 Mar 2023

REFERENCES

  • Baron, M. H., and T. Maniatis. 1986. Rapid reprogramming of globin gene expression in transient heterokaryons. Cell 46:591–602.
  • Behringer, R. R., R. E. Hammer, R. L. Brinster, R. D. Palmiter, and T. M. Townes. 1987. Two 3′ sequences direct adult erythroid-specific expression of human β-globin genes in transgenic mice. Proc. Natl. Acad. Sci. USA 84:7056–7060.
  • Behringer, R. R., T. M. Ryan, R. D. Palmiter, R. L. Brinster, and T. M. Townes. 1990. Human γ- to β-globin gene switching in transgenic mice. Genes Dev. 4:380–389.
  • Bodine, D. M., and T. J. Ley. 1987. An enhancer element lies 3′ to the human γ globin gene. EMBO J. 6:2997–3004.
  • Bollekens, J. A., and B. G. Forget. 1991. δ-β-thalassemia and hereditary persistence of fetal hemoglobin. Hematol. Oncol. Clin. N. Am. 5:399–422.
  • Caterina, J. J., T. M. Ryan, K. M. Pawlik, R. D. Palmiter, R. L. Brinster, R. R. Behringer, and T. M. Townes. 1991. Human β-globin locus control region: analysis of the 5′ DNase I hypersensitive site HS 2 in transgenic mice. Proc. Natl. Acad. Sci. USA 88:1626–1630.
  • Chada, K., J. Magram, and F. Costantini. 1986. An embryonic pattern of expression of a human fetal globin gene in transgenice mice. Nature (London) 319:685–689.
  • Chada, K., J. Magram, K. Raphael, G. Radice, E. Lacy, and F. Costantini. 1985. Specific expression of a foreign β-globin gene in erythroid cells of transgenic mice. Nature (London) 314:377–380.
  • Choi, O. R., and J. D. Engel. 1988. Developmental regulation of β-globin gene switching. Cell 55:17–26.
  • Chomczynski, P., and N. Sacchi. 1987. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162:156–159.
  • Collis, P., M. Antoniou, and F. Grosveld. 1990. Definition of the minimal requirements within the human β-globin gene and the dominant control region for high level expression. EMBO J. 9:233–240.
  • Cunningham, J. M., M. E. Purucker, S. M. Jane, B. Safer, E. F. Vanin, P. A. Ney, C. H. Lowrey, and A. W. Nienhuis. 1993. The Aγ globin gene 3′ regulatory element binds to the nuclear matrix and interacts with the SAR/MAR binding protein, SATB1. Blood 82(Suppl.):434a.
  • Curtin, P. T., D. P. Liu, W. Liu, J. C. Chang, and Y. W. Kan. 1989. Human β-globin gene expression in transgenic mice is enhanced by a distant DNase I hypersensitive site. Proc. Natl. Acad. Sci. USA 86:7082.
  • Dillon, N., and F. Grosveld. 1991. Human γ-globin genes silenced independently of other genes in the β globin locus. Nature (London) 350:252–254.
  • Dillon, N., and F. Grosveld. 1993. Transcriptional regulation of multigene loci: multilevel control. Trends Genet. 9:134–137.
  • Ellis, J., D. Talbot, N. Dillon, and F. Grosveld. 1993. Synthetic human β-globin 5′ HS2 constructs function as locus control regions only in multicopy transgene concatamers. EMBO J. 12:127–134.
  • Engel, J. D. 1993. Developmental regulation of human β-globin gene transcription: a switch of loyalties? Trends Genet. 9:304–309.
  • Enver, T., A. J. Ebens, W. C. Forrester, and G. Stamatoyannopoulos. 1989. The human β-globin locus activation region alters the developmental fate of a human fetal globin gene in transgenic mice. Proc. Natl. Acad. Sci. USA 86:7033–7037.
  • Enver, T., N. Raich, A. J. Ebens, T. Papayannopoulou, F. Costantini, and G. Stamatoyannopoulos. 1990. Developmental regulation of human fetal-to-adult globin gene switching in transgenic mice. Nature (London) 344:309–313.
  • Epner, E., W. C. Forrester, and M. Groudine. 1988. Asynchronous DNA replication within the human β-globin gene locus. Proc. Natl. Acad. Sci. USA 85:8081–8085.
  • Epner, E., W. C. Forrester, C. Kim, A. Telling, T. Enver, M. Brice, T. Papayannopoulou, and M. Groudine. 1991. Chromatin structure and DNA replication patterns in normal and mutant β-globin gene loci, p. 153–177. In G. Stamatoyannopoulos, and A. W. Nienhuis (ed.), The regulation of hemoglobin switching. Johns Hopkins University Press, Baltimore.
  • Felsenfeld, G. 1992. Chromatin as an essential part of the transcriptional mechanism. Nature (London) 355:219–224.
  • Forrester, W. C., E. Epner, M. C. Driscoll, T. Enver, M. Brice, T. Papayannopoulou, and M. Groudine. 1990. A deletion of the human β-globin locus activation region causes a major alteration in chromatin structure and replication across the entire β-globin locus. Genes Dev. 4:1637–1649.
  • Forrester, W. C., U. Novak, R. Gelinas, and M. Groudine. 1989. Molecular analysis of the human β-globin locus activation region. Proc. Natl. Acad. Sci. USA 86:5439–5443.
  • Forrester, W. C., S. Takegawa, T. Papayannopoulou, G. Stamatoyannopoulos, and M. Groudine. 1987. Evidence for a locus activation region: the formation of developmentally stable hypersensitive sites in globin-expressing hybrids. Nucleic Acids Res. 15:10159–10177.
  • Forrester, W. C., C. Thompson, J. T. Elder, and M. Groudine. 1986. A developmentally stable chromatin structure in the human β-globin gene cluster. Proc. Natl. Acad. Sci. USA 83:1359–1363.
  • Fraser, P., J. Hurst, P. Collis, and F. Grosveld. 1990. DNasel hypersensitive sites 1, 2 and 3 of the human β-globin dominant control region direct position-independent expression. Nucleic Acids Res. 18:3503–3508.
  • Fraser, P., S. Pruzina, M. Antoniou, and F. Grosveld. 1993. Each hypersensitive site of the human β-globin locus control region confers a different developmental pattern of expression of the globin genes. Genes Dev. 7:106.
  • Gaensler, K. M., M. Kitamura, and Y. W. Kan. 1993. Germ-line transmission and developmental regulation of a 150-kb yeast artificial chromosome containing the human β-globin locus in transgenic mice. Proc. Natl. Acad. Sci. USA 90:11381–11385.
  • Grosveld, F., M. Antoniou, M. Berry, E. deBoer, N. Dillon, J. Ellis, P. Fraser, O. Hanscombe, J. Hurst, A. Imam, M. Lindenbaum, S. Philipsen, S. Pruzina, J. Strouboulis, S. Raguz-Bolognesi, and D. Talbot. 1993. The regulation of human globin gene switching. Philos. Trans. R. Soc. Lond. B Biol. Sci. 339:183–191.
  • Grosveld, F., G. B. van Assendelft, D. R. Greaves, and G. Kollias. 1987. Position-independent, high-level expression of the human β-globin gene in transgenic mice. Cell 51:975–985.
  • Hanscombe, O., D. Whyatt, P. Fraser, N. Yannoutsos, D. Greaves, N. Dillon, and F. Grosveld. 1991. Importance of globin gene order for correct developmental expression. Genes Dev. 5:1387–1394.
  • Jarman, A. P., and D. R. Higgs. 1988. Nuclear scaffold attachment sites in the human globin gene complexes. EMBO J. 11:3337–3344.
  • Karlinsey, J., G. Stamatoyannopoulos, and T. Enver. 1989. Simultaneous purification of DNA and RNA from small numbers of eukaryotic cells. Anal. Biochem. 18:303–306.
  • Kollias, G., N. Wrighton, J. Hurst, and F. Grosveld. 1986. Regulated expression of human γ-, β-, and hybrid γ-β-globin genes in transgenic mice: manipulation of the developmental expression patterns. Cell 46:89–94.
  • Liu, D., J. C. Chang, P. Moi, W. Liu, Y. W. Kan, and P. T. Curtin. 1992. Dissection of the enhancer activity of β-globin 5′ DNase I-hypersensitive site 2 in transgenic mice. Proc. Natl. Acad. Sci. USA 89:3899–3903.
  • Lloyd, J. A., J. M. Krakowsky, S. C. Crable, and J. B. Lingrel. 1992. Human γ- to β-globin gene switching using a mini construct in transgenic mice. Mol. Cell. Biol. 12:1561–1567.
  • Morley, B. J., C. A. Abbott, J. A. Sharpe, J. Lida, P. S. Chan-Thomas, and W. G. Wood. 1992. A single β-globin locus control region element (5′ hypersensitive site 2) is sufficient for developmental regulation of human globin genes in transgenic mice. Mol. Cell. Biol. 12:2057–2066.
  • Morley, B. J., C. A. Abbott, and W. G. Wood. 1991. Regulation of human fetal and adult globin genes in mouse erythroleukemia cells. Blood 78:1355–1363.
  • Perez-Stable, C., and F. Costantini. 1990. Roles of fetal Gγ-globin promoter elements and the adult β-globin 3′ enhancer in the stage-specific expression of globin genes. Mol. Cell. Biol. 10:1116–1125.
  • Peterson, K. R., C. H. Clegg, C. Huxley, B. M. Josephson, H. S. Haugen, T. Furukawa, and G. Stamatoyannopoulos. 1993. Transgenic mice containing a 248 kb human β locus yeast artificial chromosome display proper developmental control of human globin genes. Proc. Natl. Acad. Sci. USA 90:7593.
  • Philipsen, S., S. Pruzina, and F. Grosveld. 1993. The minimal requirements for activity in transgenic mice of hypersensitive site 3 of the β globin locus control region. EMBO J. 12:1977–1985.
  • Philipsen, S., D. Talbot, P. Fraser, and F. Grosveld. 1990. The β-globin dominant control region: hypersensitive site 2. EMBO J. 9:2159–2167.
  • Purucker, M., D. Bodine, H. Lin, K. T. McDonagh, and A. W. Nienhuis. 1990. Structure and function of the enhancer 3′ to the human γ globin gene. Nucleic Acids Res. 18:7407–7415.
  • Reitman, M., E. Lee, H. Westphal, and G. Felsenfeld. 1993. An enhancer/locus control region is not sufficient to open chromatin. Mol. Cell. Biol. 13:3990–3998.
  • Ryan, T. M., R. R. Behringer, N. C. Martin, T. M. Townes, R. D. Palmiter, and R. L. Brinster. 1989. A single erythroid-specific DNase I super-hypersensitive site activates high levels of human β-globin gene expression in transgenic mice. Genes Dev. 3:314–323.
  • Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Press, Cold Spring Harbor, N.Y.
  • Stamatoyannopoulos, G. 1991. Human hemoglobin switching. Science 252:383.
  • Stamatoyannopoulos, G., B. Josephson, J.-W. Zhang, and Q. Li. 1993. Developmental regulation of human γ-globin genes in transgenic mice. Mol. Cell. Biol. 13:7636–7644.
  • Stamatoyannopoulos, G., and A. W. Nienhuis. 1993. Hemoglobin switching, p. 107–155. In G. Stamatoyannopoulos, A. W. Nienhuis, P. Majerus, and H. Varmus (ed.), Molecular basis of blood diseases. W. B. Saunders, Philadelphia.
  • Strouboulis, J., N. Dillon, and F. Grosveld. 1992. Developmental regulation of a complete 70-kb human β-globin locus in transgenic mice. Genes Dev. 6:1857–1864.
  • Talbot, D., P. Collis, M. Antoniou, M. Vidal, F. Grosveld, and D. R. Greaves. 1989. A dominant control region from the human β-globin locus conferring integration site-independent gene expression. Nature (London) 338:352–355.
  • Talbot, D., S. Philipsen, P. Fraser, and F. Grosveld. 1990. Detailed analysis of the site 3 region of the human β-globin dominant control region. EMBO J. 9:2169–2178.
  • Thorey, I. S., G. Cecena, W. Reynolds, and R. G. Oshima. 1993. Alu sequence involvement in transcriptional insulation of the keratin 18 gene in transgenic mice. Mol. Cell. Biol. 13:6742–6751.
  • Townes, T. M., and R. R. Behringer. 1990. Human globin locus activation region (LAR): role in temporal control. Trends Genet. 6:219–223.
  • Townes, T. M., J. B. Lingrel, H. Y. Chen, R. L. Brinster, and R. D. Palmiter. 1985. Erythroid-specific expression of human β-globin genes in transgenic mice. EMBO J. 4:1715–1723.
  • Tuan, D., and I. M. London. 1984. Mapping of DNase I-hypersen-sitive sites in the upstream DNA of human embryonic e-globin gene in K562 leukemia cells. Proc. Natl. Acad. Sci. USA 81:2718–2722.
  • Tuan, D., W. Solomon, Q. Li, and I. M. London. 1985. The β-like-globin gene domain in human erythroid cells. Proc. Natl. Acad. Sci. USA 82:6384–6388.
  • Tuan, D., W. B. Solomon, I. M. London, and D. P. Lee. 1989. An erythroid-specific, developmental-stage-independent enhancer far upstream of the human “β-like globin” genes. Proc. Natl. Acad. Sci. USA 86:2554–2558.
  • van Assendelft, G. B., O. Hanscombe, F. Grosveld, and D. R. Greaves. 1989. The β-globin dominant control region activates homologous and heterologous promoters in a tissue-specific manner. Cell 56:969–977.
  • Whitelaw, E., S.-F. Tsai, P. Hogben, and S. H. Orkin. 1990. Regulated expression of globin chains and the erythroid transcription factor GATA-1 during erythropoiesis in the developing mouse. Mol. Cell. Biol. 10:6596–6606.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.