9
Views
9
CrossRef citations to date
0
Altmetric
Research Article

A Deletion That Includes the Signal Peptidase Cleavage Site Impairs Processing, Glycosylation, and Secretion of Cell Surface Yeast Acid Phosphatase

&
Pages 2668-2675 | Published online: 31 Mar 2023

LITERATURE CITED

  • Arima, K., Oshima, T., Kubota, I., Nakamura, N., Mizunaga, T., and Toh-e, A. 1983. The nucleotide sequence of the yeast PHOS gene: a putative precursor of repressible acid phosphatase. Nucleic Acids Res. 11:1657–1672.
  • Arnold, W. N. 1972. Location of acid phosphatase and β-fructofuranosidase within yeast cell envelopes. J. Bact. 112:1346–1352.
  • Ballou, C. E. 1976. Structure and biosynthesis of the mannan component of the yeast cell envelope. Adv. Microb. Physiol. 14:93–158.
  • Bauer, H., and Sigarlakie, E. 1973. Cytochemistry on ultrathin frozen sections of yeast cells. Localization of acid and alkaline phosphatase. J. Microsc. 99:205–218.
  • Beggs, J. D. 1981. Gene cloning in yeast, p. 175–203. In Williamson, R. (ed.). Genetic engineering, vol. 2. Academic Press, London.
  • Blobel, G., and Dobberstein, B. 1975. Transfer of proteins across membranes. I. Presence of proteolytically processed and non processed nascent immunoglobulin chains on membrane bound ribosomes of murine melanoma. J. Cell Biol. 67:835–851.
  • Bostian, K. A., Lemire, J. M., Cannon, L. E., and Halvorson, H. O. 1980. In vitro synthesis of repressible yeast acid phosphatase: identification of multiple mRNAs and products. Proc. Natl. Acad. Sci. U.S.A. 77:4504–4508.
  • Bostian, K. A., Lemire, J. M., and Halvorson, H. O. 1983. Physiological control of repressible acid phosphatase gene transcripts in Saccharomyces cerevisiae. Mol. Cell. Biol. 3:839–853.
  • Buttin, G. 1963. Mécanismes régulateurs dans la biosynthèse des enzymes du métabolisme du galactose chez Escherichia coli K12.1. La biosynthèse induite de la galactokinase et l'induction simultanée de la séquence enzymatique. J. Mol. Biol. 7:164–182.
  • Carlson, M., Taussig, R., Kustu, S., and Bostein, D. 1983. The secreted form of invertase in Saccharomyces cerevisiae is synthesized from mRNA encoding a signal sequence. Mol. Cell. Biol. 3:439–447.
  • Chamberlain, J. P. 1979. Fluorographic detection of radioactivity in polyacrylamide gels with the water soluble fluor: sodium salicylate. Anal. Biochem. 98:132–135.
  • Clewell, D. B. 1972. Nature of Col E1 plasmid replication in Escherichia coli in the presence of chloramphenicol. J. Bacteriol. 110:667–676.
  • Dobberstein, B., Garoff, H., and Warren, G. 1979. Cell free synthesis and membrane insertion of mouse H-2Dd histocompatibility antigen and 02 microglobulin. Cell 17:759–769.
  • Douglas, M., and Butow, R. A. 1976. Variant forms of mitochondrial translation products in yeast: evidence for location of determinants on mitochondrial DNA. Proc. Natl. Acad. Sci. U.S.A. 73:1083–1086.
  • Esmon, B., Novick, P., and Schekman, R. 1981. Compartimentalized assembly of oligosaccharides on exported glycoproteins in yeast. Cell 25:451–460.
  • Gething, M. J., and Sambrook, J. 1982. Construction of influenza haemagglutinin genes that code for intracellular and secreted forms of the protein. Nature (London) 300:598–602.
  • Hall, M. N., and Silhavy, T. J. 1981. Genetic analysis of the major outer membrane proteins of Escherichia coli. Annu. Rev. Genet. 15:91–142.
  • Hinnen, A., Hicks, J. B., and Fink, G. R. 1978. Transformation of yeast. Proc. Natl. Acad. Sci. U.S.A. 75:1929–1933.
  • Hinnen, A., Meyhack, B., and Tsapis, R. 1983. High expression and secretion of foreign proteins in yeast, p. 157–163. In Korhola, M. and Viàsànen, E. (éd.), Gene expression in yeast. Proceeding of the Alko yeast Symposium, Helsinki, vol. 1. Foundation for Biotechnical and Industrial Fermentation Research, Helsinki.
  • Katz, F. N., Rothman, J. E., Lingappa, V. R., Blobel, G., and Lodish, H. F. 1977. Membrane assembly in vitro: synthesis, glycosylation, and asymétrie insertion of a transmembrane protein. Proc. Natl. Acad. Sci. U.S.A. 74:3278–3282.
  • Kreil, G. 1981. Transfer of proteins across membranes. Annu. Rev. Biochem. 50:317–348.
  • Kreil, G., Mollay, C., Kashnitz, R., Vilas, U., and Haiml, L. 1980. Prepromellitin specific cleavage of the prepeptide and the propeptide in vitro. Ann. N.Y. Acad. Sci. 343:338–346.
  • Lin, J. J. C., Kanazawa, H., Ozois, J., and Wu, H. C. 1978. An Escherichia coli mutant with an amino acid alteration within the signal sequence of outer membrane prolipoprotein. Proc. Natl. Acad. Sci. U.S.A. 75:4891–4895.
  • Lin, J. J. C., Kanazawa, H., and Wu, H. C. 1980. Assembly of outer membrane lipoprotein in an Escherichia coli mutant with a single amino acid replacement within the signal sequence of prolipoprotein. J. Bacteriol. 141:550–557.
  • Linnemans, W. A. M., Boer, P., and Elbers, P. F. 1977. Localization of acid phosphatase in Saccharomyces cerevisiae: a clue to cell wall formation. J. Bacteriol. 131:638–644.
  • Mandel, M., and Higa, A. 1970. Calcium dependent bacteriophage DNA infection. J. Mol. Biol. 53:159–162.
  • Messing, J. 1981. M13 mp2 and derivatives: a molecular cloning system for DNA sequencing, strand specific hybridization, and in vitro mutagenesis, p. 143–153. In Walton, A. G. (ed.), Recombinant DNA. The Third Cleveland Symposium on Mac-romolecules. Elsevier, Amsterdam.
  • Meyer, D. I., Krause, E., and Dobberstein, B. 1982. Secretory protein translocation across membranes: the role of the “docking protein.” Nature (London) 297:647–650.
  • Meyhack, B., Bajwa, W., Rudolph, H., and Hinnen, A. 1982. Two yeast acid phosphatase structural genes are the result of a tandem duplication and show different degrees of homology in their promoter and coding sequence. EMBO J. 1:675–680.
  • Michaelis, S., and Beckwith, J. 1982. Mechanism of incorporation of cell envelope proteins in Escherichia coli. Annu. Rev. Microbiol. 36:435–455.
  • Milstein, C., Brownlee, G. G., Harrison, T. M., and Matthews, M. B. 1972. A possible precursor of immunoglobulin light chains. Nature (London) New Biol. 239:117–120.
  • Novick, P., Ferro, S., and Schekman, R. 1981. Order of events in the yeast secretory pathway. Cell 25:461–469.
  • Novick, P., Fields, C., and Schekman, R. 1980. Identification of 23 complementation groups required for posttranslational events in the yeast secretory pathway. Cell 21:205–215.
  • Ohashi, A., Gibson, J., Gregor, I., and Schatz, G. 1982. Import of proteins into mitochondria. The precursor of cytochrome c1 is processed in two steps, one of them heme dependent. J. Biol. Chem. 257:13042–13047.
  • Palade, G. 1975. Intracellular aspects of the process of protein synthesis. Science 189:347–357.
  • Pelham, H. R. B., and Jackson, R. J. 1976. An efficient mRNA-dependent translation system from reticuloycte lysates. Eur. J. Biochem. 67:247–256.
  • Perlman, D., and Halvorson, H. O. 1981. Distinct repressible mRNAs for cytoplasmic and secreted yeast invertase are encoded by a single gene. Cell 25:525–536.
  • Reid, G. A., Yonetani, T., and Schatz, G. 1982. Import of proteins into mitochondria. Import and maturation of the mitochondrial intermembrane space enzymes cytochrome b2 and cytochrome c peroxidase in intact yeast cells. J. Biol. Chem. 257:13068–13074.
  • Riezman, H., Hase, T., Van Loon, A. P. G. M., Grivell, L. A., Suda, K., and Schatz, G. 1983. Import of proteins into mitochondria: a 70 kilodalton outer membrane protein with a large carboxy-terminal deletion is still transported to the outer membrane. EMBO J. 2:2161–2168.
  • Rogers, D. T., Lemire, J. M., and Bostian, K. A. 1982. Acid phosphatase polypeptides in Saccharomyces cerevisiae are encoded by a differentially regulated multigene family. Proc. Natl. Acad. Sci. U.S.A. 79:2157–2161.
  • Schweingruber, A. M., and Schweingruber, E. 1982. Differential regulation of the active and inactive forms of Saccharomyces cerevisiae acid phosphatase. Mol. Gen. Genet. 187:107–111.
  • Sekikawa, K., and Lai, C. J. 1983. Defects in functional expression of an influenza virus haemagglutinin lacking the signal peptide sequences. Proc. Natl. Acad. Sci. U.S.A. 80:3563–3567.
  • Serrano, R., Gancedo, J. M., and Gancedo, C. 1973. Assay of yeast enzymes in situ: a potential tool in regulation studies. Eur. J. Biochem. 34:479–482.
  • Snider, M. D., and Robbins, P. W. 1982. Transmembrane organization of protein glycosylation: mature oligo-saccharide-lipid is located on the luminal side of microsomes from Chinese hamster ovary cells. J. Biol. Chem. 257:6796–6801.
  • Takatsuki, A., Khono, K., and Tamura, G. 1975. Inhibition of biosynthesis of polyisoprenol sugars in chick embryo microsomes by tunicamycin. Agric. Biol. Chem. 39:2089–2091.
  • Thill, G. P., Kramer, R. A., Turner, K. J., and Bostian, K. A. 1983. Comparative analysis of the 5′-end regions of two repressible acid phosphatase genes in Saccharomyces cerevisiae. Mol. Cell. Biol. 3:570–579.
  • Toh-e, A., Ueda, Y., Kakimoto, S.-I., and Oshima, Y. 1973. Isolation and characterization of acid phosphatase mutants in Saccharomyces cerevisiae. J. Bacteriol. 113:727–738.
  • Walter, P., and Blobel, G. 1981. Translocation of proteins across the endoplasmic reticulum. II. Signal recognition protein (SRP) mediates the selective binding to microsomal membranes of in vitro assembled polysomes synthesizing secretory proteins. J. Cell Biol. 91:551–556.
  • Wolfe, P. B., Silver, P., and Wickner, W. 1982. The isolation of homogenous leader peptidase from a strain of Escherichia coli which overproduces the enzyme. J. Biol. Chem. 257:7898–7902.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.