2
Views
11
CrossRef citations to date
0
Altmetric
Research Article

Temporal Analysis of General Control of Amino Acid Biosynthesis in Saccharomyces cerevisiae: Role of Positive Regulatory Genes in Initiation and Maintenance of mRNA Derepression

, &
Pages 520-528 | Published online: 31 Mar 2023

LITERATURE CITED

  • Birnboim, H. C., and Doy, J. 1979. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 7:1513–1523.
  • Bonven, B., and Gull⊘v, K. 1979. Peptide chain elongation rate and ribosomal activity in Saccharomyces cerevisiae as a function of growth rate. Mol. Gen. Genet. 170:225–230.
  • Botstein, D., Falco, S., Stewart, S., Brennan, M., Scherer, S., Stinchcomb, D., Struhl, K., and Davis, R. 1979. Sterile host yeasts (SHY): A eukaryotic system of biological containment for recombinant DNA experiments. Gene 8:17–24.
  • Boyer, H., and Roulland-Dussoix, D. 1969. A complementation analysis of the restriction and modification of DNA in E. coli. J. Mol. Biol. 41:459–472.
  • Clarke, L., and Carbon, J. 1978. Functional expression of cloned yeast DNA in Escherichia coli: specific complementation of arginosuccinate lyase (argH) mutations. J. Mol. Biol. 120:517–532.
  • Cryer, D., Eccleshall, R., and Marmur, J. 1975. Isolation of yeast DNA. Methods Cell Biol. 12:39–44.
  • Delforge, J., Messenguy, F., and Wiame, J. M. 1975. The regulation of arginine biosynthesis in Saccharomyces cerevisiae. The specificity of arg R− mutations and the general control of amino acid biosynthesis. Eur. J. Biochem. 57:231–239.
  • Donahue, T., Daves, F., Lucchini, R. S., and Fink, G. R. 1983. A short nucleotide sequence required for regulation of HIS4 by the general control system of yeast. Cell 32:89–98.
  • Donahue, T. F., Farabaugh, P. J., and Fink, G. R. 1982. The nucleotide sequence of the HIS4 region of yeast. Gene 18:47–59.
  • Gainer, H., Barker, J. L., and Wollberg, Z. 1975. Preferential incorporation of extracellular amino acids into neuronal proteins. J. Neurochem. 25:177–179.
  • Gehrke, L., and Ilan, J. 1983. Preferential utilization of exoge-nously supplied leucine for protein synthesis in estradiol-in-duced and uninduced cockerel liver explants. Proc. Natl. Acad. Sci. U.S.A. 80:3274–3278.
  • Gross, K. J., and Pogo, A. O. 1974. Control mechanism of ribonucleic acid synthesis in eukaryotes. The effect of amino acid and glucose starvation and cycloheximide on yeast deoxyribonucleic acid-dependent ribonucleic acid polymerases. J. Biol. Chem. 249:568–576.
  • Grunstein, M., and Hogness, D. 1975. A method for the isolation of cloned DNA that contains a specific gene. Proc. Natl. Acad. Sci. U.S.A. 72:3961–3966.
  • Hinnebusch, A., and Fink, G. R. 1983. Positive regulation in the general amino acid control of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. U.S.A. 80:5374–5378.
  • Hinnebusch, A. G., and Fink, G. R. 1983. Repeated DNA sequences upstream from HIS I also occur at several other co-regulated genes in Saccharomyces cerevisiae. J. Biol. Chem. 258:5238–5247.
  • Hinnen, A., Hicks, J., and Fink, G. R. 1978. Transformation of yeast. Proc. Natl. Acad. Sci. U.S.A. 75:1929–1933.
  • Ilan, J., and Ilan, J. 1981. Preferential channeling of exogenous-ly supplied methionine into protein by sea urchin embryos. J. Biol. Chem. 256:2830–2834.
  • Jones, E. W., and Fink, G. R. 1982. Regulation of amino acid and nucleotide biosynthesis in yeast, p. 181–299. In Strathern, J. N., Jones, E. W., and Broach, J. R. (ed.), The molecular biology of the yeast Saccharomyces: metabolism and gene expression. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Klopotowski, T., and Wiater, A. 1965. Synergism of aminotri-azole and phosphate on the inhibition of yeast imidazoleglycerol phosphate dehydratase. Arch. Biochem. Biophys. 112:562–566.
  • Mandel, M., and Higa, A. 1970. Calcium-dependent bacteriophage infection. J. Mol. Biol. 53:159–162.
  • Maniatis, T., Fritsch, E., and Sambrook, J. 1982. Molecular cloning: a laboratory manual, p. 202–203, 282. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Messenguy, F. 1979. Concerted repression of the synthesis of arginine biosynthetic enzymes by amino acids: a comparison between the regulatory mechanisms controlling amino acid biosyntheses in bacteria and in yeast. Mol. Gen. Genet. 169:85–95.
  • Messenguy, F., Colin, D., and Ten Have, J. 1980. Regulation of compartmentation of amino acid pools in Saccharomyces cerevisiae and its effects on metabolic control. Eur. J. Biochem. 108:439–447.
  • Messenguy, F., and Delforge, J. 1976. Role of transfer ribonucleic acids in the regulation of several biosyntheses in Saccharomyces cerevisiae. Eur. J. Biochem. 67:335–339.
  • Messenguy, F., and Dubois, E. 1983. Participation of transcriptional and post-transcriptional regulatory mechanisms in the control of arginine metabolism in yeast. Mol. Gen. Genet. 189:148–156.
  • Meussdoerffer, F., and Fink, G. R. 1983. Structure and expression of two aminoacyl-tRNA synthetase genes from Saccharomyces cerevisiae. J. Biol. Chem. 258:6293–6299.
  • Miller, J. H. 1972. Experiments in molecular genetics, p. 431435. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Miozzari, G., Niederberger, P., and Hutter, R. 1977. Action of tryptophan analogues in Saccharomyces cerevisiae. Arch. Microbiol. 115:307–316.
  • Miozzari, G., Niederberger, P., and Hutter, R. 1978. Tryptophan biosynthesis in Saccharomyces cerevisiae: control of the flux through the pathway. J. Bacteriol. 134:48–59.
  • Moat, A. G., Ahmad, F., Alexander, J. K., and Barnes, I. J. 1969. Alteration in the amino acid content of yeast during growth under various nutritional conditions. J. Bacteriol. 98:573–578.
  • Nasmyth, K. A., and Reed, S. I. 1980. Isolation of genes by complementation in yeast: molecular cloning of a cell-cycle gene. Proc. Natl. Acad. Sci. U.S.A. 77:2119–2123.
  • Niederberger, P., Miozzari, G., and Hutter, R. 1981. Biological role of the general control of amino acid biosynthesis in Saccharomyces cerevisiae. Mol. Cell. Biol. 1:584–593.
  • Penn, M. D., Galgoci, B., and Greer, H. 1983. Identification of AAS genes and their regulatory role in general control of amino acid biosynthesis in yeast. Proc. Natl. Acad. Sci. U.S.A. 80:2704–2708.
  • Petersen, N. L., McLaughlin, C. S., and Nierlich, D. P. 1976. Half-life of yeast messenger RNA. Nature (London) 260:70–72.
  • Rigby, P., Diekman, M., Rhodes, C., and Berg, P. 1977. Labeling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase 1. J. Mol. Biol. 113:237–251.
  • Rytka, J. 1975. Positive selection of general amino acid permease mutants in Saccharomyces cerevisiae. J. Bacteriol. 121:562–570.
  • Schürch, A., Miozarri, J., and Hutter, R. 1974. Regulation of tryptophan biosynthesis in Saccharomyces cerevisiae: mode of action of 5-methyl-tryptophan and 5-methyl-tryptophan-sensi-tive mutants. J. Bacteriol. 117:1131–1140.
  • Sherman, F., Fink, G. R., and Lawrence, C. W. 1979. Methods in yeast genetics: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Silverman, S. J., Rose, M., Botstein, D., and Fink, G. R. 1982. Regulation of HIS4-lacZ fusions in Saccharomyces cerevisiae. Mol. Cell. Biol. 2:1212–1219.
  • Sripati, E., and Warner, J. 1978. Isolation, characterization, and translation of mRNA from yeast. Methods Cell. Biol. 20:61–81.
  • Stinchcomb, D. T., Mann, C., and Davis, R. W. 1982. Centromeric DNA from Saccharomyces cerevisiae. J. Mol. Biol. 158:157–179.
  • Struhl, K., and Davis, R. 1981. Transcription of the his3 gene region in Saccharomyces cerevisiae. J. Mol. Biol. 152:535–552.
  • Thomas, P. S. 1980. Hybridization of denatured RNA and small DNA fragments transferred to nitrocellulose. Proc. Natl. Acad. Sci. U.S.A. 77:5201–5205.
  • Wahl, G. M., Stern, M., and Stark, G. R. 1979. Efficient transfer of large DNA fragments from agarose gels to diazobenzyloxy-methyl-paper and rapid hybridization by using dextran sulfate. Proc. Natl. Acad. Sci. U.S.A. 76:3683–3687.
  • Walz, A., Ratzkin, B., and Carbon, J. 1978. Control of expression of a cloned yeast (Saccharomyces cerevisiae) gene (trp5) by a bacterial insertion element (IS2). Proc. Natl. Acad. Sci U.S.A. 75:6172–6176.
  • Watson, T. G. 1976. Amino acid pool composition of Saccharomyces cerevisiae as a function of growth rate and amino acid nitrogen source. J. Gen. Microbiol. 96:263–268.
  • Weislander, L. 1979. A simple method to recover intact high molecular weight RNA and DNA after electrophoretic separation in low gelling temperature agarose gels. Anal. Biochem. 98:305–309.
  • Wiemken, A. 1980. Compartmentation and control of amino acid utilization in yeast, p. 225–238. In Nover, L., Lynen, F., and Mothes, K. (ed.), Cell compartmentation and metabolic channeling. Elsevier North-Holland Publishing Co., New York.
  • Wiemken, A., and Dürr, M. 1974. Characterization of amino acid pools in the vacuolar compartment of Saccharomyces cerevisiae. Arch. Microbiol. 101:45–57.
  • Wolfner, M., Yep, D., Messenguy, F., and Fink, G. R. 1975. Integration of amino acid biosynthesis into the cell cycle of Saccharomyces cerevisiae. J. Mol. Biol. 90:273–290.
  • Zalkin, H., and Yanofsky, C. 1982. Yeast gene TRP5: structure, function, regulation. J. Biol. Chem. 257:1491–1500.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.