7
Views
14
CrossRef citations to date
0
Altmetric
Research Article

DNA Damage and Heat Shock Dually Regulate Genes in Saccharomyces cerevisiae

&
Pages 90-96 | Received 19 Apr 1985, Accepted 23 Sep 1985, Published online: 31 Mar 2023

LITERATURE CITED

  • Ashburner, M., and M. J. Bonner. 1979. The induction of gene activity in Drosophila by heat shock. Cell 17:241–254.
  • Aviv, H., and P. Leder. 1972. Purification of biologically active globin messenger RNA by chromatography on oligothymidylic acid cellulose. Proc. Natl. Acad. Sci. USA 69:1408–1412.
  • Bagg, A., C. J. Kenyon, and G. C. Walker. 1981. Inducibility of a gene product required for UV and chemical mutagenesis in Escherichia coli. Proc. Natl. Acad. Sci. USA 78:5749–5753.
  • Baluch, J., R. Sussman, and J. Resnick. 1980. Induction of prophage λ without amplification of rec A protein. Mol. Gen. Genet. 178:317–323.
  • Bardwell, J. C. A., and E. A. Craig. 1984. Major heat shock gene of Drosophila and the Escherichia coli heat inducible dna K gene are homologous. Proc. Natl. Acad. Sci. USA 81:848–852.
  • Bennetzen, J. L., and B. D. Hall. 1982. The primary structure of the Saccharomyces cerevisiae gene for alcohol dehydrogenase I. J. Biol. Chem. 257:3018–3025.
  • Berk, A. J., and P. A. Sharp. 1977. Sizing and mapping of early adenovirus mRNAs by gel electrophoresis of S1 endonuclease-digested hybrids. Cell 12:721–732.
  • Brazzell, C., and T. D. Ingolia. 1984. Stimuli that induce a yeast heat shock gene fused to β-galactosidase. Mol. Cell. Biol. 4: 2573–2579.
  • Dasgupta, U. B., and W. C. Summers. 1978. Ultraviolet reactivation of herpes simplex virus is mutagenic and inducible in mammalian cells. Proc. Natl. Acad. Sci. USA 75:2378–2381.
  • Donahue, T. F., R. S. Davis, G. Lucchini, and G. R. Fink. 1983. A short nucleotide sequence required for regulation of HIS4 by the general control system of yeast. Cell 32:89–98.
  • Farrelly, F. W., and D. B. Finkelstein. 1984. Complete sequence of the heat shock-inducible HSP90 gene of Saccharomyces cerevisiae. J. Biol. Chem. 259:5745–5751.
  • Finkelstein, D. B., S. Strausberg, and L. McAlister. 1982. Alterations of transcription during heat shock of Saccharomyces cerevisiae. J. Biol. Chem. 257:8405–8411.
  • Georgopoulos, C. P., and I. Herskowitz. 1971. Escherichia coli mutants blocked in? DNA synthesis, p. 553–564. In A. D. Hershey (ed.), The bacteriophage lambda. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Grossman, A. D., J. W. Erickson, and C. A. Gross. 1984. The htpR gene product of E. coli is a sigma factor for heat shock promoters. Cell 38:383–390.
  • Guarante, L., B. Lalonde, P. Gifford, and E. Alani. 1984. Distinctly regulated tandem upstream activation sites mediate catabolite repression of the CYC1 gene of S. cerevisiae. Cell 36:503–511.
  • Guarante, L., and T. Mason. 1983. Heme regulates transcription of the CYC1 gene of S. cerevisiae via an upstream activation site. Cell 32:1279–1286.
  • Hinnebusch, A. G., and G. R. Fink. 1983. Repeated DNA sequences upstream from HIS1 also occur at several other co-regulated genes in Saccharomyces cerevisiae. J. Biol. Chem. 258:5238–5247.
  • Holland, J. P., L. Labienice, C. Swimmer, and M. J. Holland. 1983. Homologous nucleotide sequences at the 5′ termini of messenger RNAs synthesized from the yeast enolase and glyceraldehyde-3-phosphate dehydrogenase gene families. J. Biol. Chem. 258:5291–5299.
  • Holmes, D. S., and M. Quigley. 1981. A rapid boiling method for the preparation of bacterial plasmids. Anal. Biochem. 114: 193–197.
  • Huisman, O., R. D'Ari, and J. George. 1980. Inducible sfi dependent division inhibiton in Escherichia coli. Mol. Gen. Genet. 177:629–636.
  • Ingolia, T. D., M. R. Slater, and E. A. Craig. 1982. Saccharomyces cerevisiae contains a complex multigene family related to the major heat shock-inducible gene of Drosophila. Mol. Cell. Biol. 2:1388–1398.
  • Kelley, P. M., and M. J. Schlesinger. 1982. Antibodies to two major chicken heat shock proteins cross-react with similar proteins in widely divergent species. Mol. Cell. Biol. 2:267–274.
  • Kenyon, C. J., and G. C. Walker. 1981. Expression of the E. coli uvrA gene is inducible. Nature (London) 289:808–810.
  • Krueger, J. H., and G. C. Walker. 1984. groEL and dnaK genes of Escherichia coli are induced by UV irradiation and nalidixic acid in an htpR+-dependent fashion. Proc. Natl. Acad. Sci. USA 81:1499–1503.
  • Lehrach, H., D. Diamond, J. M. Wozney, and H. Boedtker. 1977. RNA molecular weight determinations by gel electrophoresis under denaturing conditions, a critical reexamination. Biochemistry 16:4743–4751.
  • Li, G. C., and Z. Werb. 1982. Correlations between synthesis of heat shock proteins and development of thermotolerance in Chinese hamster fibroblasts. Proc. Natl. Acad. Sci. USA 79:3219–3223.
  • Maga, J. A., and K. McEntee. 1985. Response of S. cerevisiae to N-methy1-N′-nitro-N-nitrosoguanidine: mutagenesis, survival and DDR gene expression. Mol. Gen. Genet. 200:313–321.
  • Maniatis, T., E. F. Fritsch, and J. Sambrook. 1982. Molecular cloning; a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • McClanahan, T., and K. McEntee. 1984. Specific transcripts are elevated in Saccharomyces cerevisiae in response to DNA damage. Mol. Cell. Biol. 4:2356–2363.
  • McEntee, K. 1977. Protein X is the product of the recA gene of Escherichia coli. Proc. Natl. Acad. Sci. USA 74:5275–5279.
  • Messing, J. 1983. New M13 vectors for cloning. Methods Enzymol. 101:20–78.
  • Miller, H. L., M. Kirk, and H. Echols. 1981. SOS induction and autoregulation of the himA gene for site-specific recombination in E. coli. Proc. Natl. Acad. Sci. USA 78:6754–6758.
  • Miller, M. J., N.-H. Xuong, and E. P. Geiduschek. 1979. A response of protein synthesis to temperature shift in the yeast Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 76: 5222–5225.
  • Parker, C. S., and J. Topol. 1984. A Drosophila RNA polymerase II transcription factor binds to the regulatory site of an HSP70 gene. Cell 37:273–283.
  • Rigby, P., M. Dieckmann, C. Rhodes, and P. Berg. 1977. Labeling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase I. J. Mol. Biol. 113:237–251.
  • Ruby, S. W., and J. W. Szostak. 1985. Specific Saccharomyces cerevisiae genes are expressed in response to DNA-damaging agents. Mol. Cell. Biol. 5:75–84.
  • Ruby, S. W., J. W. Szostak, and A. W. Murray. 1983. Cloning regulated yeast genes from a pool of lacZ fusions. Methods EnzymoL 101:253–269.
  • Struhl, K. 1982. Regulatory sites for HIS3 gene expression in yeast. Nature (London) 300:284–287.
  • Thomas, P. S. 1980. Hybridization of denatured RNA and small DNA fragments transferred to nitrocellulose. Proc. Natl. Acad. Sci. USA 77:5201–5205.
  • Tilly, K., and C. Georgopoulos. 1982. Evidence that the two Escherichia coli groE morphogenetic gene products interact in vivo. J. Bacteriol. 149:1082–1088.
  • Tilly, K., N. McKittrick, M. Zylicz, and C. Georgopoulos. 1983. The dnaK protein modulates the heat-shock response of Escherichia coli. Cell 34:641–646.
  • Walker, G. C. 1984. Mutagenesis and inducible responses to deoxyribonucleic acid damage in Escherichia coli. Microbiol. Rev. 48:60–93.
  • Weaver, R. F., and C. Weissman. 1979. Mapping of RNA by a modification of the Berk-Sharp procedure: the 5′ termini of 15S β-globin mRNA precursor and mature 10S β-globin mRNA have identical map coordinates. Nucleic Acids Res. 7:1175–1193.
  • Wu, C. 1984. Two protein-binding sites in chromatin implicated in the activation of heat-shock genes. Nature (London) 311: 81–84.
  • Yamamori, T., K. Ito, Y. Nakamura, and T. Yura. 1978. Transient regulation of protein synthesis in Escherichia coli upon shift-up of growth temperature. J. Bacteriol. 134: 1133–1140.
  • Zalkin, H., and C. Yanofsky. 1982. Yeast gene TRP5: structure, function, regulation. J. Biol. Chem. 257:1491–1500.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.