6
Views
8
CrossRef citations to date
0
Altmetric
Research Article

Effects of Cycloheximide on Thermotolerance Expression, Heat Shock Protein Synthesis, and Heat Shock Protein mRNA Accumulation in Rat Fibroblasts

, &
Pages 1088-1094 | Received 29 Jul 1985, Accepted 20 Dec 1985, Published online: 31 Mar 2023

LITERATURE CITED

  • Alahiotis, S. N., and G. Stephanou. 1982. Temperature adaptation of Drosophila populations. The heat shock proteins system. Comp. Biochem. Physiol. 73B:529–533.
  • Ashburner, M., and J. J. Bonner. 1979. The induction of gene activity in Drosophila by heat shock. Cell 17:241–254.
  • Balmain, A., M. Ramsden, G. T. Bowden, and J. Smith. 1984. Activation of the mouse cellular Harvey-ras gene in chemically induced benign skin papillomas. Nature (London) 307:658–660.
  • Bensaude, O., C. Babinet, M. Morange, and F. Jacob. 1983. Heat shock proteins, first major products of zygotic gene activity in mouse embryos. Nature (London) 305:331–333.
  • Bienz, M., and H. R. B. Pelham. 1982. Expression of a Drosophila heat-shock protein in Xenopus oocytes: conserved and divergent regulatory signals. EMBO J. 12:1583–1588.
  • Bond, U., and M. J. Schlesinger. 1985. Ubiquitin is a heat shock protein in chicken embryo fibroblasts. Mol. Cell. Biol. 5:949–956.
  • Burke, J. F., and D. Ish-Horowicz. 1982. Expression of Drosophila heat shock genes is regulated in Rat-1 cells. Nucleic Acids Res. 10:3821–3830.
  • Corces, V., A. Pellicer, R. Axel, and M. Meselson. 1981. Integration, transcription, and control of a Drosophila heat shock gene in mouse cells. Proc. Natl. Acad. Sci. USA 78:7038–7042.
  • Craig, E. A., and K. Jacobsen. 1984. Mutations of the heat inducible 70 kilodalton genes of yeast confer temperature sensitive growth. Cell 38:841–849.
  • DiDomenico, B. J., G. E. Bugaisky, and S. Lindquist. 1982. The heat shock response is self-regulated at both the transcriptional and post-transcriptional levels. Cell 31:593–603.
  • Elder, P. K., L. J. Schmidt, T. Ono, and M. J. Getz. 1984. Specific stimulation of actin gene transcription by epidermal growth factor and cycloheximide. Proc. Natl. Acad. Sci. USA 81:7476–7480.
  • Finkelstein, D. B., and S. Strausberg. 1983. Identification and expression of a cloned yeast heat shock gene. J. Biol. Chem. 258:1908–1913.
  • Gerner, E. W. 1983. Thermotolerance, p. 141–162. In F. K. Storm (ed.), Hyperthermia in cancer therapy. G. K. Hall, Boston.
  • Gerner, E. W., R. Boone, W. G. Connor, J. A. Hicks, and M. L. M. Boone. 1976. A transient thermotolerant survival response produced by single thermal doses in HeLa cells. Cancer Res. 36:1035–1040.
  • Gerner, E. W., and M. J. Schneider. 1975. Induced thermal resistance in HeLa cells. Nature (London) 256:500–502.
  • Gross, C. A., Z. Burton, M. Gribskov, A. Grossman, H. Liebke, W. Taylor, W. Walter, and R. R. Burgess. 1982. Genetic, functional, and structural analysis of E. coli RNA polymerase sigma subunit: a heat shock protein, p. 253–266. In R. L. Rodriguez and M. J. Chamberlain (ed.), Promoters: structure and function. Praeger Publications, New York.
  • Heikkila, J. J., M. Kloc, J. Bury, G. A. Schultz, and L. W. Browder. 1985. Acquisition of the heat-shock response and thermotolerance during early development of Xenopus laevis. Dev. Biol. 107:483–489.
  • Henle, K. J., and D. B. Leeper. 1976. Interaction of hyperthermia and radiation in CHO cells: recovery kinetics. Radiat. Res. 66:505–518.
  • Henle, K. J., and D. B. Leeper. 1982. Modification of the heat response and thermotolerance by cycloheximide, hydroxyurea, and lucanthone in CHO cells. Radiat. Res. 90:339–347.
  • Holmgren, R., K. F. Livak, R. Morimoto, R. Freund, and M. Meselson. 1979. Studies of cloned sequences from four Drosophila heat shock loci. Cell 18:1359–1370.
  • Kelley, P. M., and M. J. Schlesinger. 1982. Antibodies to two major chicken heat shock proteins cross-react with similar proteins in widely divergent species. Mol. Cell. Biol. 2:267–274.
  • Kothary, R. K., D. Jones, and E. P. M. Candido. 1984. 70-Kilodalton heat shock polypeptides from rainbow trout: characterization of cDNA sequences. Mol. Cell. Biol. 4:1785–1791.
  • Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (London) 227:680–685.
  • Landry, J., D. Bernier, P. Chretien, L. M. Nicole, R. M. Tanguay, and N. Marceau. 1982. Synthesis and degradation of heat shock proteins during development and decay of thermotolerance. Cancer Res. 42:2457–2461.
  • Landry, J., and P. Chretien. 1983. Relationship between hyperthermia-induced heat-shock proteins and thermotolerance in Morris hepatoma cells. Can. J. Biochem. Cell Biol. 61:428–437.
  • Li, G. C. 1985. Elevated levels of 70,000 dalton heat shock protein in transiently thermotolerant Chinese hamster fibroblasts and in their stable heat resistant variants. Int. J. Radiat. Oncol. Biol. Phys. 11:165–177.
  • Li, G. C., and G. M. Hahn. 1980. A proposed operational model of thermotolerance based on effects of nutrients and the initial treatment temperature. Cancer Res. 40:4501–4508.
  • Li, G. C., and Z. Werb. 1982. Correlation between synthesis of heat shock proteins and development of thermotolerance in Chinese hamster fibroblasts. Proc. Natl. Acad. Sci. USA 79:3218–3222.
  • Livak, K. J., R. Freund, M. Schweber, P. C. Wensink, and M. Meselson. 1978. Sequence organization and transcription at two heat shock loci in Drosophila. Proc. Natl. Acad. Sci. USA 75:5613–5617.
  • Loomis, W. F., and S. Wheeler. 1980. Heat shock response of Dictyostelium. Dev. Biol. 79:399–408.
  • Lowe, D. G., W. D. Fulford, and L. A. Moran. 1983. Mouse and Drosophila genes encoding the major heat shock protein (hsp 70) are highly conserved. Mol. Cell. Biol. 3:1540–1543.
  • Lowe, D. G., and L. A. Moran. 1984. Proteins related to the mouse L-cell major heat protein are synthesized in the absence of heat shock gene expression. Proc. Natl. Acad. Sci. USA 81:2317–2321.
  • McAlister, L., and D. B. Finkelstein. 1980. Heat shock proteins and thermal resistance in yeast. Biochem. Biophys. Res. Commun. 93:819–824.
  • Minton, K. W., P. Karinin, G. M. Hahn, and A. P. Minton. 1982. Nonspecific stabilization of stress-susceptible proteins by stress-resistant proteins: a model for the biological role of heat shock proteins. Proc. Natl. Acad. Sci. USA 79:7107–7111.
  • Minty, A. J., M. Carvatti, B. Robert, A. Cohen, P. Daubas, A. Weydert, F. Gros, and M. E. Buckingham. 1981. Mouse actin messenger RNAs: construction and characterization of a recombinant plasmid molecule containing a complementary DNA transcript of mouse-actin mRNA. J. Biol. Chem. 256:1008–1014.
  • Muller, W. U., G. C. Li, and L. S. Goldstein. 1985. Heat does not induce synthesis of heat shock proteins or thermotolerance in the earliest stage of mouse embryo development. Int. J. Hyperthermia 1:97–102.
  • Neidhardt, F. C., T. A. Phillips, R. A. VanBogelen, M. W. Smith, Y. Georgalis, and A. R. Subramanian. 1981. Identity of the B56.5 protein, the A-protein, and the groE gene product of Escherichia coli. J. Bacteriol. 145:513–520.
  • Nicholson, R. C., and L. A. Moran. 1984. Expression of a Drosophila heat shock gene in cells of the yeast Saccharomyces cerevisiae. Biosci. Rep. 4:963–972.
  • Palzer, R. J., and C. Heidelberger. 1973. Influence of drugs and synchrony on the hyperthermic killing of HeLa cells. Cancer Res. 33:422–427.
  • Pelham, H., M. Lewis, and S. Lindquist. 1984. Expression of a Drosophila heat shock protein in mammalian cells: transient association with nucleoli after heat shock. Phil. Trans. R. Soc. Lond. B 307:301–307.
  • Phillips, T. A., R. A. VanBogelen, and F. C. Neidhardt. 1984. Lon gene product of Escherichia coli is a heat shock protein. J. Bacteriol. 159:283–287.
  • Prasad, L., D. Zouzias, and C. Basilico. 1976. State of the viral DNA in rat cells transformed by polyoma virus. I. Virus rescue and the presence of nonintegrated viral DNA molecules. J. Virol. 18:436–444.
  • Sciandra, J. J., and J. R. Subjeck. 1984. Heat shock proteins and protection of proliferation and translation in mammalian cells. Cancer Res. 44:5188–5194.
  • Subjeck, J. R., and J. J. Sciandra. 1982. Coexpression of thermotolerance and heat-shock proteins in mammalian cells, p. 405–411. In M. Schlesinger, M. Ashbumer, and A. Tissieres (ed.), Heat shock from bacteria to man. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Tilly, K., R. A. VanBogelen, C. Georgopoulos, and F. C. Neidhardt. 1983. Identification of the heat-inducible protein C15.4 as the GroES gene product in Escherichia coli. J. Bacteriol. 154:1505–1507.
  • Tissieres, A., H. K. Mitchell, and U. M. Tracy. 1974. Protein synthesis in salivary glands of Drosophila melanogaster: relation to chromosome puffs. J. Mol. Biol. 84:389–398.
  • VanBogelen, R. A., V. Vaughn, and F. C. Neidhardt. 1983. Gene from heat-inducible lysyl-tRNA synthetase (lysU) maps near cadA in Escherichia coli. J. Bacteriol. 153:1066–1068.
  • Voellmy, R., and D. Rungger. 1982. Transcription of a Drosophila heat shock gene is heat-induced in Xenopus oocytes. Proc. Natl. Acad. Sci. USA 79:1776–1780.
  • Watson, K., G. Dunlop, and R. Cavicchioli. 1984. Mitochondrial and cytoplasmic protein synthesis are not required for heat shock acquisition of ethanol and thermotolerance in yeast. FEBS Lett. 172:299–302.
  • White, C. N., and L. E. Hightower. 1984. Stress mRNA metabolism in canavanine-treated chicken embryo cells. Mol. Cell. Biol. 4:1534–1541.
  • Widelitz, R. B., B. E. Magun, and E. W. Gerner. 1984. Dissociation of 68,000 Mr heat shock protein synthesis from thermotolerance expression in rat fibroblasts. Radiat. Res. 99:433–437.
  • Wu, B., C. Hunt, and R. Morimoto. 1985. Structure and expression of the human gene encoding major heat shock protein hsp 70. Mol. Cell. Biol. 5:330–341.
  • Yamamori, T., and T. Yura. 1982. Genetic control of heat-shock protein synthesis and its bearing on growth and thermal resistance in Escherichia coli K-12. Proc. Natl. Acad. Sci. USA 79:860–864.
  • Zylicz, M., J. H. LeBowitz, R. McMacken, and C. Georgopoulos. 1983. The dnaK protein of Escherichia coli possesses an ATPase and autophosphorylating activity and is essential in an in vitro DNA replication system. Proc. Natl. Acad. Sci. USA 80:6431–6435.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.