2
Views
7
CrossRef citations to date
0
Altmetric
Research Article

Differential Order of Replication of Xenopus laevis 5S RNA Genes

&
Pages 2536-2542 | Received 31 Jan 1986, Accepted 19 Mar 1986, Published online: 31 Mar 2023

LITERATURE CITED

  • Amaldi, F., D. Giacomoni, and R. Zito-Bignami. 1969. On the duplication of ribosomal RNA cistrons in Chinese hamster cells. Eur. J. Biochem. 11:419–423.
  • Balazs, I., and C. L. Schildkraut. 1976. DNA replication in synchronized cultured mammalian cells. Exp. Cell Res. 101:307–314.
  • Berlowitz, L. 1965. Correlation of genetic activity, hetero-chromatization, and RNA metabolisms. Proc. Natl. Acad. Sci. USA 53:68–73.
  • Bieker, J. J., P. L. Martin, and R. G. Roeder. 1985. Formation of a rate-limiting intermediate in 5S RNA gene transcription. Cell 40:119–127.
  • Birkenmeier, E. H., D. D. Brown, and E. Jordan. 1978. A nuclear extract of Xenopus laevis oocytes that accurately transcribes 5S RNA genes. Cell 15:1077–1086.
  • Bogenhagen, D. F., S. Sakonju, and D. D. Brown. 1980. A control region in the center of the 5S RNA gene directs specific initiation of transcription. II. The 3′ border of the region. Cell 19:27–35.
  • Bogenhagen, D. F., W. M. Wormington, and D. D. Brown. 1982. Stable transcription complexes of Xenopus 5S RNA genes: a means to maintain the differentiated state. Cell 28:413–421.
  • Brown, D. D. 1984. The role of stable complexes that repress and activate eucaryotic genes. Cell 37:359–365.
  • Brown, D. D., L. J. Korn, E. Birkenmeier, R. Peterson, and S. Sakonju. 1979. The in vitro transcription of Xenopus 5S DNA, p. 511–519. In R. Axel, T. Maniatis, and C. F. Fox (ed.), Eucaryotic gene regulation: ICN-UCLA Symposia on Molecular and Cellular Biology, vol. 14. Academic Press, Inc., New York.
  • Brown, D. D., and M. S. Schlissel. 1985. A positive transcription factor controls the differential expression of two 5S RNA genes. Cell 42:759–767.
  • Brown, D. D., and K. Sugimoto. 1973. The structure and evolution of ribosomal and 5S DNAs in Xenopus laevis and Xenopus mulleri. Cold Spring Harbor Symp. Quant. Biol. 38:501–505.
  • Brown, P. C., T. D. Tlsty, and R. T. Schimke. 1983. Enhancement of methotrexate resistance and dihydrofolate reductase gene amplification by treatment of mouse 3T6 cells with hydroxyurea. Mol. Cell. Biol. 3:1097–1107.
  • Brown, S. W. 1966. Heterochromatin provides a visible guide to suppression of gene action during development and evolution. Science 151:417–425.
  • Calza, R. E., L. A. Eckhardt, T. DelGuidice, and C. L. Schildkraut. 1984. Changes in gene position are accompanied by a change in time of replication. Cell 36:689–696.
  • D'Andrea, A. D., U. Tantravahi, M. Lalande, M. A. Perle, and S. Latt. 1983. High resolution analysis of the timing of replication of specific DNA sequences during S phase of mammalian cells. Nucleic Acids Res. 11:4753–4774.
  • Engelke, D. R., S.-Y. Ng, B. S. Shastry, and R. G. Roeder. 1980. Specific interaction of a purified transcription factor with an internal control region of 5S RNA genes. Cell 19:717–728.
  • Epner, E., R. A. Rifkind, and P. A. Marks. 1981. Replication of α and β globin DNA sequences occurs during early S-phase in murine erythroleukemia cells. Proc. Natl. Acad. Sci. USA 78:3058–3062.
  • Fedoroff, N. V., and D. D. Brown. 1977. The nucleotide sequence of the repeating unit in the oocyte 5S ribosomal DNA of Xenopus laevis. Cold Spring Harbor Symp. Quant. Biol. 42:1195–1200.
  • Fedoroff, N. V., and D. D. Brown. 1978. The nucleotide sequence of oocyte 5S DNA in Xenopus laevis. I. The AT-rich spacer. Cell 13:701–716.
  • Ford, P. J., and R. D. Brown. 1976. Sequences of 5S ribosomal RNA from Xenopus mulleri and the evolution of 5S gene-coding sequences. Cell 8:485–493.
  • Ford, P. J., and T. Mathieson. 1976. Control of 5S RNA synthesis in Xenopus laevis. Nature (London) 261:433–435.
  • Ford, P. J., and E. M. Southern. 1973. Different sequences for 5S RNA in kidney cells and ovaries of Xenopus laevis. Nature (London) New Biol. 241:7–12.
  • Furst, A., E. H. Brown, J. D. Braunstein, and C. L. Schildkraut. 1981. α-Globin sequences are located in a region of earlyreplicating DNA in murine erythroleukemia cells. Proc. Natl. Acad. Sci. USA 78:1023–1027.
  • Goldman, M. A., G. P. Holmquist, M. C. Gray, L. A. Caston, and A. Nag. 1984. Replication timing of genes and middle repetitive sequences. Science 224:686–692.
  • Gottesfeld, J., and L. S. Bloomer. 1982. Assembly of transcriptionally active 5S RNA gene chromatin in vitro. Cell 28:781–791.
  • Gray, J. W., and P. Coffino. 1979. Cell cycle analysis by flow cytometry. Methods Enzymol. 58:233–248.
  • Harper, M. E., J. Price, and L. J. Korn. 1983. Chromosomal mapping of Xenopus 5S RNA genes: somatic-type versus oocyte-type. Nucleic Acids Res. 11:2313–2333.
  • Korn, L. J. 1982. Transcription of the Xenopus 5S ribosomal RNA genes. Nature (London) 295:101–105.
  • Korn, L. J., E. H. Birkenmeier, and D. D. Brown. 1979. Transcription initiation of Xenopus 5S ribosomal RNA genes in vitro. Nucleic Acids Res. 7:947–958.
  • Korn, L. J., and D. F. Bogenhagen. 1982. Organization and transcription of the Xenopus 5S RNA genes, p. 1–29. In H. Busch and L. Rothblum (ed.), The cell nucleus, vol. 12. Academic Press, Inc., New York.
  • Korn, L. J., and D. D. Brown. 1978. Nucleotide sequence of Xenopus borealis oocyte 5S DNA: comparison of sequences that flank several related eucaryotic genes. Cell 15:1145–1156.
  • Lassar, A. B., P. L. Martin, and R. G. Roeder. 1983. Transcription of class III genes: formation of preinitiation complexes. Science 222:740–748.
  • Lima-de-Faria, A., and H. Jaworska. 1968. Late DNA synthesis in heterochromatin. Nature (London) 217:138–142.
  • Maniatis, T., E. F. Fritsch, and J. Sambrook. 1982. Molecular cloning. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.
  • Mariani, B. D., and R. T. Schimke. 1984. Gene amplification in a single cell cycle in Chinese hamster ovary cells. J. Biol. Chem. 259:1901–1910.
  • Miller, J. R., E. M. Cartwright, G. G. Brownlee, N. V. Fedoroff, and D. D. Brown. 1978. The nucleotide sequence of oocyte 5S DNA in Xenopus laevis. II. The GC-rich region. Cell 13:717–725.
  • Ng, S.-Y., C. S. Parker, and R. G. Roeder. 1979. Transcription of cloned Xenopus 5S RNA genes by X. laevis RNA polymerase III in reconstituted systems. Proc. Natl. Acad. Sci. USA 76:136–140.
  • Pardue, M. L., D. D. Brown, and M. L. Birnstiel. 1973. Location of the genes for 5S ribosomal RNA in Xenopus laevis. Chromosoma 42:191–203.
  • Pelham, H. R. B., and D. D. Brown. 1980. A specific transcription factor that can bind either the 5S RNA gene or 5S RNA. Proc. Natl. Acad. Sci. USA 77:4170–4174.
  • Pelham, H. R. B., W. M. Wormington, and D. D. Brown. 1981. Related 5S RNA transcription factors in Xenopus oocytes and somatic cells. Proc. Natl. Acad. Sci. USA 78:1760–1764.
  • Peterson, R. C., J. L. Doering, and D. D. Brown. 1980. Characterization of two Xenopus somatic 5S DNAs and one minor oocyte-specific 5S DNA. Cell 20:131–141.
  • Sakonju, S., D. F. Bogenhagen, and D. D. Brown. 1980. A control region in the center of the 5S RNA gene directs specific initiation of transcription. I. The 5′ border of the region. Cell 19:13–25.
  • Sakonju, S., and D. D. Brown. 1981. Contact points between a positive transcription factor and the Xenopus 5S RNA gene. Cell 31:395–405.
  • Sakonju, S., D. D. Brown, D. Engelke, S.-Y. Ng, B. S. Shastry, and R. G. Roeder. 1981. The binding of a transcription factor to deletion mutants of a 5S ribosomal RNA gene. Cell 23:665–669.
  • Schlissel, M. S., and D. D. Brown. 1984. The transcriptional regulation of Xenopus 5S RNA genes in chromatin: the roles of active stable transcription complexes and histone HI. Cell 37:903–913.
  • Segall, J., T. Matsui, and R. G. Roeder. 1980. Multiple factors are required for the accurate transcription of purified genes by RNA polymerase III. J. Biol. Chem. 255:11986–11991.
  • Setzer, D. R., and D. D. Brown. 1985. Formation and stability of the 5S RNA transcription complex. J. Biol. Chem. 260:2483–2492.
  • Shastry, B. S., B. M. Honda, and R. G. Roeder. 1984. Altered levels of a 5S gene-specific transcription factor (TFIIIA) during oogenesis and embryonic development of Xenopus laevis. J. Biol. Chem. 259:11373–11382.
  • Shastry, B. S., S.-Y. Ng, and R. G. Roeder. 1982. Multiple factors involved in the transcription of class III genes in Xenopus laevis. J. Biol. Chem. 257:12979–12986.
  • Stambrook, P. J. 1974. The temporal replication of ribosomal genes in synchronized Chinese hamster cells. J. Mol. Biol. 82:303–313.
  • Wegnez, M., R. Monier, and H. Denis. 1972. Sequence heterogeneity of 5S RNA in Xenopus laevis. FEBS Lett. 25:13–20.
  • Weil, P. A., J. Segall, B. Harris, S.-Y. Ng, and R. G. Roeder. 1979. Faithful transcription of eukaryotic genes by RNA polymerase III in systems reconstituted with purified DNA templates. J. Biol. Chem. 254:6163–6173.
  • Willard, H. F., and S. A. Latt. 1976. Analysis of deoxyribonucleic acid replication in human chromosomes by fluorescence microscopy. Am. J. Hum. Genet. 28:213–227.
  • Wormington, W. M., D. F. Bogenhagen, E. Jordan, and D. D. Brown. 1981. A quantitative assay for Xenopus 5S RNA gene transcription in vitro. Cell 24:809–817.
  • Wormington, W. M., and D. D. Brown. 1983. Onset of 5S RNA gene regulation during Xenopus embryogenesis. Dev. Biol. 99:248–257.
  • Wormington, W. M., M. Schlissel, and D. D. Brown. 1983. Developmental regulation of the Xenopus 5S RNA genes. Cold Spring Harbor Symp. Quant. Biol. 47:879–884.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.