37
Views
20
CrossRef citations to date
0
Altmetric
Research Article

Genetic Manipulation of Centromere function

&
Pages 2397-2405 | Received 05 Dec 1986, Accepted 26 Mar 1987, Published online: 31 Mar 2023

LITERATURE CITED

  • Adams, B 1972. Induction of galactokinase in Saccharomyces cerevisiae: kinetics of induction and glucose effects. J. Bacte- riol. 111:308–313.
  • Bassel, J., and R. Mortimer. 1971. Genetic order of the galactose structural genes in Saccharomyces cerevisiae. J. Bacteriol. 108:179–183.
  • Bloom, K. S., E. Amaya, J. A. Carbon, L. Clarke, A. Hill, and E. Yeh. 1984. Chromatin conformation of yeast centromeres. J. Cell Biol. 99:1559–1568.
  • Bloom, K. S., and J. A. Carbon. 1982. Yeast centromere DNA is in a unique and highly ordered structure in chromosomes and small circular minichromosomes. Cell 29:305–317.
  • Brinkley, B. R., and J. Cartwright, Jr. 1975. Cold-labile and cold-stable microtubules in the mitotic spindle of mammalian cells. Ann. N.Y. Acad. Sci. 253:428–439.
  • Chlebowicz-Sledziewska, E., and A. Z. Sledziewski. 1985. Construction of multicopy yeast plasmids with regulated centromere function. Gene 39:25–31.
  • Clarke, L., and J. A. Carbon. 1980. Isolation of a yeast centromere and construction of functional small circular chromosomes . Nature (London) 287:504–509.
  • Clarke, L., and J. Carbon. 1983. Genomic substitutions of centromeres in Saccharomyces cerevisiae. Nature (London) 305:23–28.
  • Clarke, L., and J. Carbon. 1985. The structure and function of yeast centromeres. Annu. Rev. Genet. 19:29–56.
  • Douglas, H. C., and D. C. Hawthorne. 1964. Enzymatic expression and genetic linkage of genes controlling galactose utilization in Saccharomyces. Genetics 49:837–844.
  • Dutcher, S. K., and L. H. Hartwell. 1982. The role of S. cerevisiae cell division cycle genes in nuclear fusion. Genetics 100:175–184.
  • Fitzgerald-Hayes, M., J. M. Buhler, T. G. Cooper, and J. Carbon. 1982. Isolation and subcloning analysis of functional centromere DNA (CENll) from Saccharomyces cerevisiae chromosome XL Mol. Cell. Biol. 2:82–87.
  • Fitzgerald-Hayes, M., L. Clarke, and J. Carbon. 1982. Nucleotide sequence comparisons and functional analysis of yeast centromere DNAs. Cell 29:235–244.
  • Futcher, B., and J. Carbon. 1986. Toxic effects of excess cloned centromeres. Mol. Cell. Biol. 6:2213–2222.
  • Gaudet, A., and M. Fitzgerald-Hayes. 1987. Alterations in the adenine-plus-thymine-rich regions of CEN3 affect centromere function in Saccharomyces cerevisiae. Mol. Cell. Biol. 7:68–75.
  • Giniger, E., S. M. Varnum, and M. Ptashne. 1986. Specific DNA binding of GAL4, a positive regulatory protein of yeast. Cell 40:767–774.
  • Haber, J. E., and P. C. Thorburn. 1984. Healing of broken linear dicentric chromosomes in yeast. Genetics 106:207–226.
  • Heiter, P., D. Pridmore, J. H. Hegemann, M. Thomas, R. W. Davis, and P. Philippsen. 1985. Functional selection and analysis of yeast centromeric DNA. Cell 42:913–921.
  • Ito, H., Y. Fukuda, K. Murata, and A. Kimura. 1983. Transformation of intact yeast cells treated with alkali cations. J. Bacteriol. 153:163–168.
  • Johnston, M., and R. W. Davis. 1984. Sequences that regulate the divergent GAL1-GAL1O promoter in Saccharomyces cere¬visiae. Mol. Cell. Biol. 4:1440–1448.
  • Kiehart, D. P. 1981. Studies on the in vivo sensitivity of spindle microtubules to calcium ions and evidence for a vesicular calcium-sequestering system. J. Cell Biol. 88:604–617.
  • King, J 1980. Regulation of structural protein interactions as revealed in phage morphogenesis. Dev. Reg. Dev. 2:101–132.
  • Liras, P., J. McCusker, S. Macioli, and J. Haber. 1978. Characterization of a mutation in yeast causing nonrandom chromosome loss during mitosis. Genetics 88:651–671.
  • Maine, G. T., R. T. Surosky, and B. K. Tye. 1984. Isolation and characterization of the centromere from chromosome V (CEN5) of Saccharomyces cerevisiae. Mol. Cell. Biol. 4:86–91.
  • Maniatis, T., E. Fritsch, and J. Sambrook. 1982. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Mann, C., and R. W. Davis. 1983. Instability of dicentric plasmids in yeast. Proc. Natl. Acad. Sci. USA 80:228–232.
  • McClintock, B 1938. The behavior of successive nuclear divi¬sions of a chromosome broken in meiosis. Proc. Natl. Acad. Sci. USA 25:405–416.
  • McGrew, J., B. Diehl, and M. Fitzgerald-Hayes. 1986. Single base-pair mutations in centromere element III cause aberrant chromosome segregation in Saccharomyces cerevisiae. Mol. Cell. Biol. 6:530–538.
  • Murray, A. W., and J. W. Szostack. 1983. Pedigree analysis of plasmid segregation in yeast. Cell 34:961–970.
  • Neitz, M., and J. Carbon. 1985. Identification and characterization of the centromere from chromosome XIV in Saccharomyces cerevisiae. Mol. Cell. Biol. 5:2887–2893.
  • Ng, R., S. Cumberledge, and J. Carbon. 1986. Structure and function of centromeres, p. 225–239. In J. Hicks (ed.), Yeast cell biology. Alan R. Liss, Inc., New York.
  • Panzeri, L., I. Groth-Clausen, J. Sheperd, A. Stotz, and P. Philippsen. 1984. Centromeric DNA in yeast. Chromosomes Today 8:46–58.
  • Panzeri, L., L. Landonio, A. Stotz, and P. Philippsen. 1985. Role of conserved sequence elements in yeast centromere DNA. EMBO J. 4:1867–1874.
  • Panzeri, L., and P. Phillippsen. 1982. Centromeric DNA from chromosome VI in Saccharomyces cerevisiae strains. EMBO J. 1:1605–1611.
  • Pringle, J. R., and L. H. Hartwell. 1981. The Saccharomyces cerevisiae cell cycle, p. 97–142. In J. N. Strathem, E. W. Jones, and J. R. Broach (ed.), The molecular biology of the yeast Saccharomyces cerevisiae: life cycle and inheritance. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Rothstein, R. J. 1983. One-step gene disruption in yeast. Meth¬ods Enzymol. 101:202–211.
  • Southern, E. M. 1975. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 98:503–517.
  • Stinchcomb, D. T., C. Mann, and R. W. Davis. 1982. Centromeric DNA from Saccharomvces cerevisiae. J. Mol. Biol. 158:157–179.
  • Weisbrod, S 1982. Active chromatin. Nature (London) 297:289–295.
  • Wu, C 1980. The 5′ ends of Drosophila heat shock genes in chromatin are hypersensitive to DNAase I. Nature (London) 286:854–860.
  • Yeh, E., J. Carbon, and K. S. Bloom. 1985. A tightly centromere-linked gene (SPO15) essential for meiosis in the yeast Saccharomyces cerevisiae. Mol. Cell. Biol. 6:158–167.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.