6
Views
3
CrossRef citations to date
0
Altmetric
Research Article

The Yeast Acid Phosphatase Can Enter the Secretory Pathway without Its N-Terminal Signal Sequence

, , &
Pages 3306-3314 | Received 09 Jun 1987, Accepted 16 Jun 1987, Published online: 31 Mar 2023

LITERATURE CITED

  • Achstetter, T., O. Emter, C. Ehmann, and D. H. Wolf. 1984. Proteolysis in eucaryotic cells: identification of multiple proteolytic enzymes in yeast. J. Biol. Chem. 259:13334–13343.
  • Arima, K. T., I. Oshima, N. Kubota, T. Nakamura, T. Mizunaga, and A. Toh-e. 1983. The nucleotide sequence of the yeast PH05 gene: a putative precursor of repressible acid phosphatase contains a signal peptide. Nucleic Acids Res. 11:1657–1672.
  • Bajwa, W., B. Meyhack, H. Rudolph, A. M. Schweingrueber, and A. Hinnen. 1984. Structural analysis of the two tandemly repeated acid phosphatase genes in yeast. Nucleic Acids Res. 12:7721–7739.
  • Bajwa, W., H. Rudolph, and A. Hinnen. 1987. PHO5 upstream sequences confer phosphate control on the constitutive PHO3 gene. Yeast 3:33–42.
  • Bankaitis, V. A., J. P. Ryan, B. A. Rasmussen, and P. Bassford, Jr. 1985. The use of genetic techniques to analyse protein export in Escherichia coli. Curr. Top. Membr. Transp. 24:105–150.
  • Blachly-Dyson, E., and T. H. Stevens. 1987. Yeast car-boxypeptidase Y can be translocated and glycosylated without its amino-terminal signal sequence. J. Cell. Biol. 104:1183–1190.
  • Blobel, G., and B. Dobberstein. 1975. Transfer of proteins across membranes. I. Presence of proteolytically processed and nonprocessed nascent immunoglobulin chains on membrane bound ribosomes of murine myeloma. J. Cell Biol. 67:835–851.
  • Briggs, M. S., and L. M. Gierasch. 1985. Molecular mechanisms of protein secretion: the role of the signal sequence. Adv. Protein Chem. 38:109–180.
  • Chamberlain, J. P. 1979. Fluorographic detection of radioactivity in polyacrylamide gels with the water soluble fluor, sodium salicylate. Anal. Biochem. 98:132–135.
  • Clewell, D. B. 1972. Nature of colE1 plasmid replication in Escherichia coli in the presence of chloramphenicol. J. Bacte- riol. 110:667–676.
  • Doyle, C., J. Sambrook, and M. J. Gething. 1986. Analyses of progressive deletions of the transmembrane and cytoplasmic domains of influenza hemagglutinin. J. Cell Biol. 103:1193–1204.
  • Esmon, B., P. Novick, and R. Schekman. 1981. Compartmentalized assembly of oligosaccharides on exported glycoproteins in yeast. Cell 25:451–160.
  • Friedlander, M., and G. Blobel. 1985. Bovine opsin has more than one signal sequence. Nature (London) 318:338–343.
  • Gething, M. J., and J. Sambrook. 1982. Construction of influenza haemagglutinin genes that code for intracellular and se-creted forms of the protein. Nature (London) 300:598–603.
  • Haguenauer-Tsapis, R., and A. Hinnen. 1984. A deletion that includes the signal peptidase cleavage site impairs processing, glycosylation, and secretion of cell surface yeast acid phosphatase. Mol. Cell. Biol. 4:2668–2675.
  • Haguenauer-Tsapis, R., M. Nagy, and A. Ryter. 1986. A deletion that includes the segment coding for the signal peptidase cleavage site delays release of Saccharomyces cerevisiae: acid phosphatase from the endoplasmic reticulum. Mol. Cell. Biol. 6:723–729.
  • Hansen, W., P. D. Garcia, and P. Walter. 1986. In vitro protein translocation across the yeast endoplasmic reticulum: ATP- dependent post-translational translocation of the prepro-α- factor. Cell 45:397–106.
  • Hong, G. F. 1981. A method for sequencing single stranded cloned DNA in both directions. Bioscience Rep. 1:243–252.
  • Ito, H., Y. Fukuda, K. Murata, and A. Kimura. 1983. Transformation of intact yeast cells treated with alcali cations. J. Bacteriol. 153:163–168.
  • Kadonaga, J. T., A. E. Gautier, D. R. Straus, A. D. Charles, M. D. Edge, and J. R. Knowles. 1984. The role of the lactamase signal sequence in the secretion of proteins by Escherichia coli. J. Biol. Chem. 259:2149–2154.
  • Kaiser, C. A., and D. Botstein. 1986. Secretion-defective mutations in the signal sequence for Saccharomyces cerevisiaeinvertase. Mol. Cell. Biol. 6:2382–2391.
  • Kaiser, C. A., D. Preuss, P. Grisafi, and D. Botstein. 1987. Many random sequences functionally replace the secretion signal sequence of yeast invertase. Science 235:312–317.
  • Krieg, P. A., and D. A. Melton. 1984. Functional messenger RNAs are produced by sp6 in vitro transcription of cloned cDNAs. Nucleic Acids Res. 12:7057–7070.
  • Kuo, S. C., and J. O. Lampen. 1972. Inhibition by 2-deoxy-D- glucose of synthesis of glycoprotein enzymes by protoplasts of Saccharomyces cerevisiae: relation to inhibition of sugar uptake and metabolism. J. Bacteriol. 111:419–429.
  • Kyte, J., and R. F. Doolittle. 1982. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157:105–132.
  • Linnemans, W. A., P. Boer, and P. F. Elbers. 1977. Localization of acid phosphatase in Saccharomyces cerevisiae: a clue to cell wall formation. J. Bacteriol. 131:638–644.
  • Lolle, S. J., and H. Bussey. 1986. In vivo evidence for posttrans- Iational translocation and signal cleavage of the killer preprotoxin of Saccharomyces cerevisiae. Mol. Cell. Biol. 6:4274–4280.
  • Maniatis, T., E. F. Fritsch, and J. Sambrook. 1982. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Meyer, D. L, E. Krause, and B. Dobberstein. 1982. Secretory protein translocation across membranes: the role of the “docking protein.” Nature (London) 297:647–650.
  • Meyhack, B., W. Bajwa, H. Rudolph, and A. Hinnen. 1982. Two yeast acid phosphatase structural genes are the result of a tandem duplication and show different degrees of homology in their promoter and coding sequences. EMBO J. 1:675–680.
  • Mizunaga, T., and T. Noguchi. 1982. The role of coreoligosaccharide in formation of an active acid phosphatase and its secretion by yeast protoplasts. J. Biochem. 91:191–200.
  • Monod, M., I. Rauseo-Koenig, S. Silve, R. Haguenauer-Tsapis, and A. Hinnen. 1987. Phenotypes associated with in vitro constructed signal sequence mutations in the yeast PHO5 gene, p. 193–201. In M. Alacevic, D. Hranueli, and Z. Toman (ed.), Proceedings of the 5th International Symposium on the Genetics of Industrial Microorganisms.
  • Novick, P., C. Field, and R. Schekman. 1980. Identification of 23 complementary groups required for post-translational events in the yeast secretory pathway. Cell 21:205–215.
  • Randall, L. L., and S. J. S. Hardy. 1986. Correlation of competence for export with lack of tertiary structure of the mature species: a study in vivo of maltose binding protein in E. coli. Cell 46:921–928.
  • Rothblatt, J. A., and D. Meyer. 1986. Secretion in yeast: reconstitution of the translocation and glycosylation of α factor and invertase in a homologous cell-free system. Cell 44:619–628.
  • Rothblatt, J. A., and D. Meyer. 1986. Secretion in yeast: translocation and glycosylation of prepro-α-factor in vitro can occur via an ATP-dependent post-translational mechanism. EMBO J. 5:1031–1036.
  • Rudolph, H., and A. Hinnen. 1987. The yeast PHO5 promoter: phosphate-control elements and sequences mediating mRNA start-site selection. Proc. Natl. Acad. Sci. USA 84:1340–1344.
  • Sanger, F., S. Nicklen, and R. Coulson. 1977. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74:5463–5467.
  • Schonholzer, F., A. M. Schweingrueber, H. Trachsel, and E. Schweingrueber. 1985. Intracellular maturation and secretion of acid phosphatase of Saccharomyces cerevisiae. Eur. J. Bio- chem. 147:273–279.
  • Spiess, M., and H. F. Lodish. 1986. An internal signal sequence: the asialoglycoprotein receptor membrane anchor. Cell 44:177–185.
  • Towbin, H., T. Staehelin, and J. Gordon. 1979. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. USA 76:4350–4354.
  • Townsend, A. R. M., J. Bastin, K. Gould, and G. G. Brownlee. 1986. Cytotoxic T lymphocytes recognize influenza haemagglutinin that lacks a signal sequence. Nature (London) 324:575–577.
  • Walter, P., and G. Blobel. 1982. Signal recognition particle contains a 7 S RNA essential for protein translocation across the endoplasmic reticulum. Nature (London) 299:691–698.
  • Walter, P., and V. R. Lingappa. 1986. Mechanism of protein translocation across the endoplasmic reticulum membrane. Annu. Rev. Cell. Biol. 2:499–516.
  • Waters, M. G., and G. Blobel. 1986. Secretory protein translocation in a yeast cell-free system can occur posttranslationally and requires ATP hydrolysis. J. Cell. Biol. 102:1543–1550.
  • Wiedman, M., A. Huth, and T. A. Rapoport. 1986. A signal sequence is required for the functions of the signal recognition particle. Biochem. Biophys. Res. Commun. 134:790–796.
  • Zimmerman, R., and D. I. Meyer. 1986. 1986: a year of new insights into how proteins cross membranes. Trends Biochem. Sci. 11:512–515.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.