4
Views
25
CrossRef citations to date
0
Altmetric
Research Article

Mutational Analysis of the HIS4 Translational Initiator Region in Saccharomyces cerevisiae

, &
Pages 2964-2975 | Received 19 Feb 1988, Accepted 12 Apr 1988, Published online: 31 Mar 2023

LITERATURE CITED

  • Bachmair, A., D. Finley, and A. Varshavsky. 1986. in vivo half-life of a protein is a function of its amino-terminal residue. Science 234:179–186.
  • Boeke, J. D., F. LaCroute, and G. R. Fink. 1984. A positive selection of mutants lacking orotidine-5'-phosphate decarboxylase activity in yeast:5-fluoro-orotic acid resistance. Mol. Gen. Genet. 197:345–346.
  • Botstein, D., S. C. Falco, S. E. Stewart, M. Brennan, S. Scherer, D. T. Stinchcomb, K. Struhl, and R. W. Devis. 1979. Sterile host yeasts (SHY): a eukaryotic system of biological containment for recombinant DNA experiments. Gene 8:17–24.
  • Carlson, M., and D. Botstein. 1982. Two differentially regulated mRNAs with different 5' ends encode secreted and intracellular forms of yeast invertase. Cell 28:148–154.
  • Chan, Y.-L., R. Gutell, H. F. Noller, and I. G. Wool. 1984. The nucleotide sequence of a rat 18S ribosomal RNA gene and a proposal for the secondary structure of 18S rRNA. J. Biol. Chem. 259:224–230.
  • Cigan, A. M., and T. F. Donahue. 1986. The methionine initiator tRNA genes of yeast. Gene 41:34M348.
  • Cigan, A. M., and T. F. Donahue. 1987. Sequence and structural features associated with translational initiator regions in yeast— a review. Gene 59:1–18.
  • Donahue, T. F., and A. M. Cigan. 1988. Genetic selection for mutations that reduce or abolish ribosomal recognition of the HIS4 translational initiator region. Mol. Cell. Biol. 8:2955–2963.
  • Donahue, T. F., R. S. Deves, G. Lucchini, and G. R. Fink. 1983. A short nucleotide sequence required for regulation of HIS4 by the general control system of yeast. Cell 32:89–98.
  • Donahue, T. F., P. J. Farabaugh, and G. R. Fink. 1982. The nucleotide sequence of the HIS4 region of yeast. Gene 18:47–59.
  • Hamilton, R., C. K. Watanabe, and H. A. deBoer. 1987. Com- pilation and comparison of the sequence context around AUG start codons in Saccharomyces cerevisiae. Nucleic Acids Res. 15:3581–3593.
  • Harashima, S., and A. G. Hinnebusch. 1986. Multiple GCD genes required for repression of GCN4, a transcriptional acti- vator of amino acid biosynthetic genes in Saccharomyces cerevisiae. Mol. Cell. Biol. 6:3990–3998.
  • Hinnen, A., J. A. Hicks, and G. R. Fink. 1978. Transformation of yeast. Proc. Natl. Acad. Sci. USA 75:1929–1933.
  • Ito, H., Y. Fuhude, K. Murata, and A. Kimura. 1983. Transfor- mation of intact yeast cells treated with alkali cations. J. Bacteriol. 153:163–168.
  • Johansen, H., D. Schumperli, and M. Rosenberg. 1984. Affecting gene expression by altering the length and sequence of the 5' leader. Proc. Natl. Acad. Sci. USA 81:7698–7702.
  • Kozak, M. 1978. How do eukaryotic ribosomes select initiation regions in messenger RNA? Cell 15:1109–1123.
  • Kozak, M. 1980. Evaluation of the "scanning model" for initiation of protein synthesis in eucaryotes. Cell 22:7–8.
  • Kozek, M. 1981. Possible role of flanking nucleotides in recognition of the AUG initiator codon by eukaryotic ribosomes. Nucleic Acids Res. 9:5233–5252.
  • Kozak, M. 1983. Comparison of initiation of protein synthesis in procaryotes, eucaryotes, and organelles. Microbiol. Rev. 47:1–45.
  • Kozak, M. 1984. Compilation and analysis of sequences upstream from the translation start site in eukaryotic mRNAs. Nucleic Acids Res. 12:857–872.
  • Kozak, M. 1984. Point mutations close to the AUG initiator codon affect the e&ciency of translation of rat preproinsulin in vivo. Nature (London) 308:241–246.
  • Kozak, M. 1986. Influences of mRNA secondary structure on initiation by eukaryotic ribosomes. Proc. Natl. Acad. Sci. USA 83:2850–2854.
  • Kozak, M. 1986. Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell 44:283–292.
  • Kozak, M., and A. J. Shatkin. 1977. Sequences and properties of two ribosome binding sites from the small size class of reovirus mRNA. J. Biol. Chem. 252:6895–6908.
  • Lomedico, P. T., and S. I. McAndrews. 1982. Eukaryotic ribosomes can recognize preproinsulin initiation codons irrespective of their position relative to the 5'-end of mRNA. Nature (London) 299:221–226.
  • Mankin, A. S., A. M. Kopylov, P. M. Rubtsov, and K. G. Shryabin. 1981. 18S ribosomal RNA of eukaryotic ribosomes— the model of the secondary structure. Proc. Natl. Sci. USSR 256:1006–1010.
  • Maxam, A. M., and W. Gilbert. 1980. Sequencing end labeled DNA with base-specific chemical cleavages. Methods Enzymol. 65:499–560.
  • Mueller, P., and A. G. Hinnebusch. 1986. Multiple upstream AUG codons mediate translational control of GCN4. Cell 45:201–207.
  • Nagawe, F., and G. R. Fink. 1985. The relationship between the "TATA" sequence and transcription initiation sites at the HIS4 gene of Saccharoinices cerevisiae. Proc. Natl. Acad. Sci. USA 82:8557–8561.
  • Natsoulis, G., F. Hilger, and G. R. Fink. 1986. The HSTI gene encodes both the cytoplasmic and mitochondrial histidine tRNA synthetases of S. cerevisiae. Cell 46:235–243.
  • Parent, S. A., C. M. Fenimore, and K. A. Bmtain. 1985. Vector systems for the expression, analysis and cloning of DNA sequences in S. cere visiar. Yeast 1:83–138.
  • Pelletier, J., and N. Sonenberg. 1985. Insertion mutagenesis to increase secondary structure within the 5' non-coding region of a eukaryotic mRNA reduces translational e&ciency. Cell 40:515–526.
  • Sargan, D. R., S. P. Gregory, and P. H. W. Butterworth. 1982. A possible interaction between the 3' end of the l8S rRNA and the 5'-leader sequence of many eukaryotic mRNAs. FEBS Lett. 147:133–136.
  • Scherer, S., and R. W. Davis. 1979. Replacement of chromosome segments with altered DNA sequences constructed in vitro. Proc. Natl. Acad. Sci. USA 76:4951–4955.
  • Sherman, F., G. R. Fink, and C. W. Lawrence. 1972. Methods in yeast genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Sherman, F., and J. W. Siewari. 1982. Mutations altering initiation of translation of yeast iso-l-cytochrome c: contrasts between the eukaryotic and prokaryotic initiation process, p. 301–333. in J. N. Strathern, E. W. Jones, and J. R. Broach (ed.), The molecular biology of the yeast Saccharomyces. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Sherman, F., J. W. Stewart, and A. M. Schweingruber. 1980. Mutants of yeast initiating translation of iso-1-cytochrome c within a region spanning 37 nucleotides. Cell 20:215–222.
  • Silverman, S. J., M. Rose, D. Botstein, and G. R. Fink. 1982. Regulation of HlS4-lacZ fusions in Saccharomyces cerevisiae. Mol. Cell. Biol. 2:1212–1219.
  • Simseh, M., and U. L. RgjBhandary. 1972. The primary struc- ture of yeast initiator transfer ribonucleic acid. Biochem. Biophys. Res. Commun. 49:508–515.
  • Stiles, J. I., J. W. Stostak, A. T. Young, R. Wu, S. Consaul, and F. Sherman. 1981. DNA sequence of a mutation in the leader region of the yeast iso-1-cytochrome c mRNA. Cell 25:277–284.
  • Tinoco, I., P. N. Borer, B. Dengler, M. D. Levine, O. C. Uhlenbeck, M. D. Crothers, and J. Gralla. 1973. Improved estimations of secondary structure in ribonucleic acids. Nature (London) New Biol. 246:Al.
  • Werner, M., A. Feller, F. Messenguy, and A. Pierard. 1987. The leader peptide of yeast gene CPA I is essential for the translation repression of its expression. Cell 49:805–813.
  • Wolfner, M., D. Yep, F. Messenguy, and G. R. Fink. 1975. Integration of amino acid biosynthesis into the cell cycle of Saccharomyces cerevisiae. J. Mol. Biol. 96:273–290.
  • Ziiomer, R. S., D. A. Walthall, B. C. Rymond, and C. P. Hollenberg. 1984. Saccharomyces cerevisiae ribosomes recognize non-AUG initiation codons. Mol. Cell. Biol. 4:1191–1197.
  • Zoller, M. J., and M. Smith. 1984. Oligonucleotide-directed mutagenesis: a simple method using two oligonucleotide primers and a single-stranded DNA template. DNA 3:47W88.
  • Zuker, M., and P. Stiegler. 1981. Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Res. 9:133–148.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.