2
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Isolation of Mutations That Act in trans To Alter Expression from a Yeast hsp70 Promoter

, &
Pages 3423-3431 | Received 28 Dec 1987, Accepted 16 May 1988, Published online: 31 Mar 2023

Literature Cited

  • Bardwell, J. C. Α., and E. A. Craig. 1984. Major heat shock gene of Drosophila and the Escherichia coli heat inducible dnaK gene are homologous. Proc. Natl. Acad. Sci. USA 79:525-529.
  • Bienz, M., and H. R. B. Pelham. 1986. Heat shock regulatory elements function as an inducible enhancer in the Xenopus hsp70 gene and when linked to a heterologous promoter. Cell 45:753-760.
  • Bonner, J. J., C. Parks, J. Parker-Thornburg, M. Martin, and H. R. B. Pelham. 1984. The use of promoter fusions in Drosophila genetics: isolation of mutations affecting the heat shock response. Cell 37:979-991.
  • Brazzell, C., and T. D. Ingolia. 1984. Stimuli that induce a yeast heat shock gene fused to β-galactosidase. Mol. Cell. Biol. 4:2573-2579.
  • Casadaban, M. J., A. Martinez-Arias, S. K. Shapira, and J. Chou. 1983. β-Galactosidase gene fusions for analyzing gene expression in Escherichia coli and yeast. Methods Enzymol. 100:293-308.
  • Clarke, L., and J. Carbon. 1980. Isolation of a yeast centromere and construction of functional small circular chromosomes. Nature (London) 287:504-509.
  • Craig, E. A. 1985. The heat shock response. Crit. Rev. Bio-chem. 18:239-280.
  • Craig, Ε. Α., J. Kramer, and J. Kosic-Smithers. 1987. SSA1, a member of the 70-kDa heat shock protein multigene family of Saccharomyces cerevisiae, is essential for growth. Proc. Natl. Acad. Sci. USA 84:4156-4160.
  • DiDomenico, B. J., G. E. Bugaisky, and S. Lindquist. 1982. The heat shock response is self-regulated at both the transcriptional and posttranscriptional levels. Cell 31:593-603.
  • Douglas, H. C., and D. C. Hawthorne. 1964. Enzymatic expression and genetic linkage of genes controlling galactose utilization in Saccharomyces. Genetics 49:837-844.
  • Ellwood, M. S., and E. A. Craig. 1984. Differential regulation of the 70K heat shock gene and regulated genes in Saccharomyces cerevisiae. Mol. Cell. Biol. 4:1454-1459.
  • Findly, R. C., R. J. Glllies, and R. G. Shulman. 1983. In vivo phosphorus-31 nuclear magnetic resonance reveals lowered ATP during heat shock of Tetrahymena. Science 219:1223-1225.
  • Findly, R. C., and T. Pederson. 1981. Regulated transcription of the genes for actin and heat-shock proteins in cultured Drosophila cells. J. Cell. Biol. 88:323-328.
  • Grossman, A. D., J. W. Erickson, and C. A. Gross. 1984. The htpR gene product of E. coli is a sigma factor for heat-shock promoters. Cell 38:383-390.
  • Hamer, D. H., D. J. Thiele, and J. E. Lemontt. 1985. Function and autoregulation of yeast copperthionein. Science 228:685-690.
  • Hinnen, Α., J. B. Hicks, and G. R. Fink. 1978. Transformation of yeast. Proc. Natl. Acad. Sci. USA 75:1929-1933.
  • Holmgren, R., V. Corces, R. Morimoto, R. Blackman, and M. Meselson. 1981. Sequence homologies in the 5′ regions of four Drosophila heat-shock genes. Proc. Natl. Acad. Sci. USA 78:3775-3778.
  • Iida, H., and I. Yahara. 1984. A heat shock-resistant mutant of Saccharomyces cerevisiae shows constitutive synthesis of two heat shock proteins and altered growth. J. Cell Biol. 99:1441-1450.
  • Ingolia, T. D., E. A. Craig, and B. J. McCarthy. 1980. Sequence of three copies of the gene for the major Drosophila heat shock induced protein and their flanking regions. Cell 21:669-679.
  • Johnston, M., and R. W. Davis. 1984. Sequences that regulate the divergent GAL1-GAL10 promoter in Saccharomyces cerevisiae. Mol. Cell. Biol. 4:1440-1448.
  • Jones, Κ. Α., and R. C. Findly. 1986. Induction of heat shock proteins by canavanine in Tetrahymena. J. Biol. Chem. 261:8703-8707.
  • Karch, F., I. Torok, and A. Tissieres. 1981. Extensive regions of homology in front of the two hsp70 heat shock variant genes in Drosophila melanogaster. J. Mol. Biol. 148:219-230.
  • Kalnins, Α., Κ. Otto, U. Ruther, and B. Muller-Hill. 1983. Sequences of the lacZ gene of Escherichia coli. EMBO J. 2:593-597.
  • Kingston, R. E., T. J. Schuetz, and Z. Larin. 1987. Heatinducible human factor that binds to a human hsp70 promoter. Mol. Cell. Biol. 7:1530-1534.
  • Klemenz, R., D. Hultmark, and W. J. Gehring. 1985. Selective translation of heat shock mRNA in Drosophila melanogaster depends on sequence information in the leader. EMBO J. 4:2053-2060.
  • Kraus, K. W., E. M. Hallberg, and R. Hallberg. 1986. Characterization of a Tetrahymena thermophila mutant strain unable to develop normal thermotolerance. Mol. Cell. Biol. 6:3854-3861.
  • Lindquist, S. 1981. Regulation of protein synthesis during heat shock. Nature 293:311-314.
  • Lindquist, S. 1986. The heat-shock response. Annu. Rev. Bio-chem. 55:1157-1191.
  • Loomis, W. F., and S. Wheeler. 1982. Chromatin associated heat shock proteins of Dictyostelium. Dev. Biol. 90:412-418.
  • Maniatis, T., E. F. Fritsch, and J. Sambrook. 1982. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • McGarry, T. J., and S. Lindquist. 1985. The preferential translation of Drosophila hsp70 mRNA requires sequences in the untranslated leader. Cell 42:903-911.
  • McKenzie, S. L., S. Henikoff, and M. Meselson. 1975. Localization of RNA from heat-induced polysomes at puff sites in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 72:1117-1121.
  • Messing, J. 1983. New M13 vectors for cloning. Methods Enzymol. 101:20-78.
  • Miller, J. H. 1972. Experiments in molecular genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Morris, T., F. Marashi, L. Weber, E. Hickey, D. Greenspan, J. Bonner, J. Stein, and G. Stein. 1986. Involvement of the 5′-leader sequence in coupling the stability of a human H3 histone mRNA with DNA replication. Proc. Natl. Acad. Sci. USA 83:981-985.
  • Parker, C. S., and J. Topol. 1984. A Drosophila RNA polymerase II transcription factor for the heat-shock gene binds to the regulatory site of an hsp70 gene. Cell 37:273-283.
  • Parker-Thornburg, J., and J. J. Bonner. 1987. Mutations that induce the heat shock response of Drosophila. Cell 51:763-772.
  • Pelham, H. R. B. 1982. A regulatory upstream promoter element in the Drosophila hsp70 heat-shock gene. Cell 30:517-528.
  • Pelham, H. R. B., and M. Bienz. 1982. A synthetic heat-shock promoter element confers heat-inducibility on the herpes simplex virus thymidine kinase gene. EMBO J. 1:1473-1477.
  • Platt, T. 1984. Toxicity of 2-deoxygalactose to Saccharomyces cerevisiae cells constitutively synthesizing galactose-metabo-lizing enzymes. Mol. Cell. Biol. 4:994-996.
  • Rave, N., R. Crkvenjakov, and H. Boedtker. 1979. Identification of procollagen mRNAs transferred to diazobenzyloxymethyl-paper from formaldehyde-agarose gels. Nucleic Acids Res. 6:3559-3567.
  • Rosenberg, M., M. Brawner, J. Gorman, and M. Reff. 1986. Galactokinase gene fusion in the study of gene regulation in E. coli, Streptomyces, yeast and higher cell systems. Genet. Eng. 8:151-180.
  • Rymond, B. C., R. S. Zitomer, D. Schumperli, and M. Rosenberg. 1983. The expression in yeast of the Escherichia coli galK gene on CYC1::galK fusion plasmids. Gene 25:249-262.
  • Sherman, F., G. R. Fink, and J. B. Hicks. 1983. Methods in yeast genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Shin, D.-Y., K. Matsumoto, H. Iida, I. Uno, and T. Ishikawa. 1987. Heat shock response of Saccharomyces cerevisiae mutants altered in cyclic AMP-dependent protein phosphorylation. Mol. Cell. Biol. 7:244-250.
  • Slater, M. R., and E. A. Craig. 1987. Transcriptional regulation of an hsp70 heat shock gene in the yeast Saccharomyces cerevisiae. Mol. Cell. Biol. 7:1906-1916.
  • Sorger, P. K., M. J. Lewis, and H. R. B. Pelham. 1987. Heat shock factor is regulated differently in yeast and He La cells. Nature (London) 329:81-84.
  • Spradling, Α., S. Penman, and M. L. Pardue. 1975. Analysis of Drosophila mRNA by in situ hybridization: sequences transcribed in normal and heat shocked cultured cells. Cell 4:395-404.
  • Strauss, D. B., W. A. Walter, and C. A. Gross. 1987. The heat shock response of E. coli is regulated by changes in the concentration of σ32. Nature (London) 329:348-351.
  • Wiederrecht, G., J. Shuey, W. A. Kibbe, and C. S. Parker. 1987. The Saccharomyces and Drosophila heat shock transcription factors are identical in size and DNA binding properties. Cell 48:507-515.
  • Wu, C. 1984. Two protein-binding sites in chromatin implicated in the activation of heat-shock genes. Nature (London) 309:229-234.
  • Wu, C. 1984. Activating protein factor binds in vitro to upstream control sequences in heat-shock gene chromatin. Nature (London) 311:81-84.
  • Wu, C., S. Wilson, B. Walker, I. Dawid, T. Paisley, V. Zimarino, and H. Ueda. 1987. Purification and properties of Drosophila heat shock activator protein. Science 238:1247-1253.
  • Zimarino, V., and C. Wu. 1987. Induction of sequence-specific binding of Drosophila heat shock activator protein without protein synthesis. Nature (London) 327:727-730.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.