1
Views
13
CrossRef citations to date
0
Altmetric
Research Article

Multiple cis-Acting Sequence Elements Are Required for Efficient Splicing of Simian Virus 40 Small-t Antigen Pre-mRNA

, &
Pages 3582-3590 | Received 01 Feb 1988, Accepted 19 May 1988, Published online: 31 Mar 2023

LITERATURE CITED

  • Berk, A. J., and P. A. Sharp. 1977. Sizing and mapping of early adenovirus mRNAs by gel electrophoresis of S1 endonuclease-digested hybrids. Cell 12:721–732.
  • Bhat, B. M., H. A. Brady, and W. S. M. Wold. 1985. Deletion mutants that alter differential RNA processing in the E3 complex transcription unit of adenovirus. J. Mol. Biol. 190:543–557.
  • Bhat, B. M., and W. S. M. Wold. 1987. A small deletion distant from a splice or polyadenylation site dramatically alters pre-mRNA processing in region E3 of adenovirus. J. Virol. 61:3938–3945.
  • Bindereif, A., and M. R. Green. 1986. Ribonucleoprotein complex formation during pre-mRNA splicing in vitro. Mol. Cell. Biol. 6:2582–2592.
  • Black, D. L., and J. A. Steitz. 1986. Pre-mRNA splicing in vitro requires intact U4/U6 small nuclear ribonucleoprotein. Cell 46:697–704.
  • Breathnach, R., and P. Chambon. 1981. Organization and expression of eukaryotic split genes coding for proteins. Annu. Rev. Biochem. 50:349–383.
  • Breitbart, R. E., A. Andreadis, and B. Nadal-Ginard. 1987. Alternative splicing: a ubiquitous mechanism for generation of multiple protein isoforms from single genes. Annu. Rev. Biochem. 56:467–495.
  • Chabot, B., D. L. Black, D. M. LeMaster, and J. A. Steitz. 1985. The 3′ splice site of pre-messenger RNA is recognized by a small nuclear ribonucleoprotein. Science 230:1344–1349.
  • Chabot, B., and J. A. Steitz. 1987. Multiple interactions between the splicing substrate and small nuclear ribonucleoproteins in spliceosomes. Mol. Cell. Biol. 7:281–293.
  • Dignam, J. D., R. M. Lebowitz, and R. G. Roeder. 1983. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 11:1475–1489.
  • Flint, S. J., and T. R. Broker. 1981. Lytic infection by adenoviruses, p. 443–546. In J. Tooze (ed.), DNA tumor viruses. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Fradin, A., R. Jove, C. Hemenway, H. D. Keiser, J. L. Manley, and C. Prives. 1984. Splicing pathways of SV40 mRNAs in X. laevis oocytes differ in the requirements for snRNPs. Cell 37:927–936.
  • Fu, X.-Y., H. Ge, and J. L. Manley. 1988. The role of the polypyrimidine stretch at the SV40 early pre mRNA 3′ splice site in alternative splicing. EMBO J. 7:809–817.
  • Fu, X.-Y., and J. L. Manley. 1987. Factors influencing alternative splice site utilization in vivo. Mol. Cell. Biol. 7:738–748.
  • Gerk, V., and J. A. Steitz. 1986. A protein associated with small nuclear ribonucleoprotein particles recognizes the 3′ splice site of premessenger RNA. Cell 47:973–984.
  • Graham, F. L., J. Smiley, W. C. Russell, and R. Nairn. 1977. Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J. Gen. Virol. 36:59–72.
  • Green, M. R. 1986. Pre-mRNA splicing. Annu. Rev. Genet. 20:671–706.
  • Keller, E. B., and W. A. Noon. 1984. Intron splicing: a conserved internal signal in introns of animal pre-mRNAs. Proc. Natl. Acad. Sci. USA 81:7417–7420.
  • Lawn, R., A. Efstratiadis, L. O’Connell, and T. Maniatis. 1980. The nucleotide sequence of the human β-globin gene. Cell 21:647–651.
  • Left, S. E., M. G. Rosenfeld, and R. M. Evans. 1986. Complex transcriptional units: diversity in gene expression by alternative RNA processing. Annu. Rev. Biochem. 55:1091–1117.
  • Lewis, E. D., and J. L. Manley. 1985. Repression of simian virus 40 early transcription by viral DNA replication in human 293 cells. Nature (London) 317:172–175.
  • Manley, J. L., J. C. S. Noble, M. Chaudhuri, X.-Y. Fu, T. Michaeli, and C. Prives. 1986. The pathway of SV40 early mRNA splicing. Cancer Cells 4:259–265.
  • Manley, J. L., J. C. S. Noble, X.-Y. Fu, and H. Ge. 1987. Factors that influence alternative splice site selection in vitro, p. 97–112. In M. Inouye and V. Dudock (ed.), Molecular biology of RNA: new perspectives. Academic Press, New York.
  • Maxam, A. M., and W. Gilbert. 1980. Sequencing end-labeled DNA with base-specific chemical cleavages. Methods Enzymol. 65:499–560.
  • Melton, D. A., P. A. Krieg, M. R. Rebagliati, T. Maniatis, K. Zinn, and M. R. Green. 1984. Efficient in vitro synthesis of biologically active RNA and RNA hybridization probes from plasmids containing a bacteriophage SP6 promoter. Nucleic Acids Res. 12:7035–7056.
  • Mount, S. M. 1982. A catalogue of splice junction sequences. Nucleic Acids Res. 10:459–472.
  • Noble, J. C. S., C. Prives, and J. L. Manley. 1986. In vitro splicing of simian virus 40 early pre-mRNA. Nucleic Acids Res. 14:1219–1235.
  • Noble, J. C. S., Z. Pan, C. Prives, and J. L. Manley. 1987. Splicing of SV40 early pre-mRNA to large T and small t mRNAs utilizes different patterns of lariat branch sites. Cell 50:227–236.
  • Padgett, R. A., P. J. Grabowski, M. M. Konarska, S. Seiler, and P. A. Sharp. 1986. Splicing of messenger RNA precursors. Annu. Rev. Biochem. 55:1119–1150.
  • Reed, R., and T. Maniatis. 1986. A role for exon sequences and splice-site proximity in splice-site selection. Cell 46:681–690.
  • Ruskin, B., and M. R. Green. 1985. An RNA processing activity that debranches RNA lariats. Science 229:135–140.
  • Ruskin, B., and M. R. Green. 1985. Specific and stable intron-factor interactions are established early during in vitro pre-mRNA splicing. Cell 43:131–142.
  • Ruskin, B., J. M. Greene, and M. R. Green. 1985. Cryptic branch point activation allows accurate in vitro splicing of human β-globin intron mutants. Cell 41:833–844.
  • Solnick, D. 1985. Alternative splicing caused by RNA secondary structure. Cell 43:667–676.
  • Solnick, D., and S. Lee. 1987. Amount of RNA secondary structure required to induce an alternative splice. Mol. Cell. Biol. 7:3194–3198.
  • Somasekhar, M. B., and J. E. Mertz. 1985. Exon mutations that affect the choice of splice sites used in processing the SV40 late transcripts. Nucleic Acids Res. 13:5591–5609.
  • Tatei, T., K. Takemura, H. Tauaka, T. Masaki, and Y. Oshima. 1987. Recognition of 5′ and 3′ splice site sequences in pre-mRNA studied with a filter binding technique. J. Biol. Chem. 262:11667–11674.
  • Tazi, J., C. Alibert, J. Temsamani, I. Reveilland, G. Cattiala, C. Brunnel, and P. Jeanteur. 1986. A protein that specifically recognizes the 3′ splice site of mammalian pre-mRNA introns is associated with a small nuclear ribonucleoprotein. Cell 47:755–766.
  • Treisman, R., U. Novak, J. Favaloro, and R. Kamen. 1981. The structures of the spliced mRNAs encoding polyoma virus early region proteins. J. Mol. Appl. Genet. 1:183–192.
  • Ulfendahl, P. J., U. Petterson, and G. Akusjarvi. 1985. Splicing of the adenovirus-2 EIA 13S mRNA requires a minimal intron length and specific signals. Nucleic Acids Res. 13:6299–6315.
  • van San ten, V. L., and R. A. Spritz. 1986. Alternative splicing of SV40 early pre-mRNA in vitro. Nucleic Acids Res. 14:9911–9926.
  • Wieringa, B., E. Hofer, and C. Weissman. 1984. A minimal intron length but no specific internal sequence is required for splicing the large rabbit β-globin intron. Cell 37:915–925.
  • Wigler, M., A. Pellicer, S. Silverstein, R. Axel, G. Urlaub, and L. Chasin. 1979. DNA mediated transfer of adenosine phosphori-bosyl transferase locus into mammalian cells. Proc. Natl. Acad. Sci. USA 76:1373–1376.
  • Zhuang, Y., H. Leung, and A. M. Weiner. 1987. The natural 5′ splice site of simian virus 40 large T antigen can be improved by increasing the base complementarity to U1 RNA. Mol. Cell. Biol. 7:3018–3020.
  • Zoller, M. J., and M. Smith. 1983. Oligonucleotide-directed mutagenesis of DNA fragments cloned into M13 vectors. Methods Enzymol. 100:468–500.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.