0
Views
3
CrossRef citations to date
0
Altmetric
Research Article

DNase I Hypersensitivity Is Independent of Endogenous Topoisomerase II Activity During Chicken Erythrocyte Differentiation

&
Pages 3661-3669 | Received 25 Jan 1988, Accepted 09 May 1988, Published online: 31 Mar 2023

LITERATURE CITED

  • Bergsma, D. J., D. M. Olive, W. W. Hartzell, and K. N. Subramanian. 1982. Territorial limits and functional anatomy of the simian virus 40 replication origin. Proc. Natl. Acad. Sci. USA 79:381–385.
  • Berrios, M., N. Osheroff, and P. Fisher. 1985. In situ localization of DNA topoisomerase II, a major polypeptide component of the Drosophila nuclear matrix fraction. Proc. Natl. Acad. Sci. USA 82:4142–4146.
  • Brill, S. J., S. DiNardo, K. Voelkel-Meiman, and R. Sternglanz. 1987. Need for DNA topoisomerase activity as a swivel for DNA replication and transcription of ribosomal RNA. Nature (London) 326:414–416.
  • Chandrasekharappa, S. C., and K. N. Subramanian. 1987. Effects of position and orientation of the 72-base-pair-repeat transcriptional enhancer on replication from the simian virus 40 core origin. J. Virol. 61:2973–2980.
  • Chen, G. L., L. Yang, T. C. Rowe, B. D. Halligan, K. M. Tewey, and L. F. Liu. 1984. Nonintercalative antitumor drugs interfere with the breakage-reunion reaction of mammalian DNA topoisomerase II. J. Biol. Chem. 259:13560–13566.
  • Cook, P. R., and I. A. Brazell. 1976. Conformational constraints on nuclear DNA. J. Cell. Sci. 22:287–302.
  • DeVillers, J., W. Schaffner, C. Tyndall, S. Lupton, and R. Kamen. 1984. Polyomavirus DNA replication requires an enhancer. Nature (London) 312:242–246.
  • DiNardo, S., K. Voelkel, and R. Sternglanz. 1984. DNA topo-isomerase II mutant of Saccharomyces cerevisiae: topoisomer-ase II is required for segregation of daughter molecules at termination of DNA replication. Proc. Natl. Acad. Sci. USA 81:2616–2620.
  • Dolan, M., J. B. Dodgson, and J. D. Engel. 1983. Analysis of the adult chicken β-globin gene. Nucleotide sequence of the locus, microheterogeneity at the 5′-end of β-globin mRNA, an aberrant nuclear RNA species. J. Biol. Chem. 258:3983–3990.
  • Duguet, M., C. Lavenot, F. Harper, G. Mirambeau, and A.-M. De Recondo. 1983. DNA topoisomerases from rat liver: physiological variations. Nucleic Acids Res. 11:1059–1075.
  • Earnshaw, W. C., and M. S. Heck. 1985. Localization of topoisomerase II in mitotic chromosomes. J. Cell Biol. 100:1716–1725.
  • Eissenberg, J. C., I. L. Cartwright, G. H. Thomas, and S. C. R. Elgin. 1985. Selected topics in chromatin structure. Annu. Rev. Genet. 19:485–536.
  • Emerson, B. M., and G. Felsenfeld. 1984. Specific factor conferring nuclease hypersensitivity at the 5′ end of the chicken adult β-globin gene. Proc. Natl. Acad. Sci. USA 81:95–99.
  • Emerson, B. M., C. D. Lewis, and G. Felsenfeld. 1985. Interaction of specific nuclear factors with the nuclease hypersensitive region of the chicken adult β-globin gene: nature of the binding domain. Cell 41:21–30.
  • Gasser, S. M., T. Laroche, J. Falquet, E. Boy de la Tour, and U. K. Laemmli. 1986. Metaphase chromosome structure. Involvement of topoisomerase II. J. Mol. Biol. 188:613–629.
  • Gliken, G. C., I. Ruberti, and A. Worcel. 1984. Chromatin assembly in Xenopus oocytes: in vitro studies. Cell 37:33–41.
  • Heck, M. M. S., W. N. Hittelman, and W. C. Earnshaw. 1988. Differential expression of DNA topoisomerases I and II during the eukaryotic cell cycle. Proc. Natl. Acad. Sci. USA 85:1086–1090.
  • Hertz, G. Z., and J. E. Mertz. 1986. Bidirectional promoter elements of simian virus 40 are required for efficient replication of the viral DNA. Mol. Cell. Biol. 6:3513–3522.
  • Hesse, J. E., J. M. Nickol, M. R. Lieber, and G. Felsenfeld. 1986. Regulated gene expression in transfected primary chicken erythrocytes. Proc. Natl. Acad. Sci. USA 83:4312–4316.
  • Holm, C., T. Goto, J. C. Wang, and D. Botstein. 1985. DNA topoisomerase II is required at the time of mitosis in yeast. Cell 41:553–563.
  • Hsiang, H., R. Hertzberg, S. Hecht, and L. F. Liu. 1985. Camptothecin induces protein-linked DNA breaks via mammalian DNA topoisomerase I. J. Biol. Chem. 260:14873–14878.
  • Jackson, D. A., and P. R. Cook. 1986. A cell-cycle-dependent DNA polymerase activity that replicates intact DNA in chromatin. J. Mol. Biol. 192:65–76.
  • Jackson, P. D., and G. Felsenfeld. 1985. A method for mapping intranuclear protein-DNA interactions and its application to a nuclease hypersensitive site. Proc. Natl. Acad. Sci. USA 82:2296–2300.
  • Kmiec, E. B., and A. Worcel. 1985. The positive transcription factor of the 5s RNA gene induces a 5S DNA-specific gyration in Xenopus oocyte extracts. Cell 41:945–953.
  • Li, J. J., K. W. C. Peden, R. A. F. Dixon, and T. Kelly. 1986. Functional organization of the simian virus 40 origin of replication. Mol. Cell. Biol. 6:1117–1128.
  • Lilley, D. M. 1983. Eucaryotic genes—are they under torsional stress? Nature (London) 305:276–277.
  • Liu, L. F., T. C. Rowe, L. Yang, K. M. Tewey, and G. L. Chen. 1983. Cleavage of DNA by mammalian DNA topoisomerase II. J. Biol. Chem. 258:15365–15370.
  • Maniatis, T., E. F. Fritsch, and J. Sambrook. 1982. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Maxam, A. M., and W. Gilbert. 1977. A new method for sequencing DNA. Proc. Natl. Acad. Sci. USA 74:560–564.
  • McGhee, J. D., W. I. Wood, M. Dolan, J. D. Engel, and G. Felsenfeld. 1981. A 200 base pair region at the 5′ end of the chicken adult β-globin gene is accessible to nuclease digestion. Cell 27:45–55.
  • Muller, M. T., W. P. Pfund, V. B. Mehta, and D. K. Trask. 1985. Eucaryotic type I topoisomerase is enriched in the nucleolus and catalytically active on ribosomal DNA. EMBO J. 4:1237–1243.
  • Nelson, E. M., K. M. Tewey, and L. F. Liu. 1984. Mechanism of antitumor drug action: poisoning of mammalian DNA topoisomerase II on DNA by 4′-(9-acridinylamino)-methanesulfon-w-anisidide. Proc. Natl. Acad. Sci. USA 81:1361–1365.
  • Nelson, W. G., L. F. Liu, and D. S. Coffey. 1986. Newly replicated DNA is associated with DNA topoisomerase II in cultured rat prostatic adenocarcinoma cells. Nature (London) 322:187–189.
  • Newport, J. W., and D. J. Forbes. 1987. The nucleus: structure, function and dynamics. Annu. Rev. Biochem. 56:535–565.
  • Osheroff, N., and E. L. Zechiedrich. 1987. Calcium-promoted DNA cleavage by eucaryotic topoisomerase II: trapping the covalent enzyme-DNA complex in an active form. Biochemistry 26:4303–4309.
  • Palen, T. E., and T. R. Cech. 1984. Chromatin structure at the replication origins and transcription initiation regions of the ribosomal genes of Tetrahymena. Cell 36:933–942.
  • Pederson, D. S., F. Thoma, and R. T. Simpson. 1986. Core particle, fiber and transcriptionally active chromatin structure. Annu. Rev. Cell Biol. 2:117–147.
  • Rocha, E., J. R. Davie, K. E. van Holde, and H. Weintraub. 1984. Differential salt fractionation of active and inactive genomic domains in chicken erythrocyte. J. Biol. Chem. 259:8558–8563.
  • Rowe, T. C., J. C. Wang, and L. F. Liu. 1986. In vivo localization of DNA topoisomerase II cleavage sites on Droso-phila heat shock chromatin. Mol. Cell. Biol. 6:985–992.
  • Ryoji, M., and A. Worcel. 1984. Chromatin assembly in Xenopus oocytes: in vivo studies. Cell 37:21–32.
  • Saavedra, R. A., and J. A. Huberman. 1986. Both DNA topoisomerases I and II relax 2 µm plasmid DNA in living yeast cells. Cell 45:65–70.
  • Sander, M., and T. Hsieh. 1983. Double strand DNA cleavage by type II DNA topoisomerase from Drosophila melanogaster. J. Biol. Chem. 258:8421–8428.
  • Shaw, J. L., J. Blanco, and G. C. Mueller. 1975. A simple procedure for isolation of DNA, RNA and protein fractions from cultured animal cells. Anal. Biochem. 65:125–131.
  • Spitwer, J., and M. Muller. 1988. A consensus sequence for cleavage by vertebrate DNA topoisomerase II. Nucleic Acids Res. 16:5533–5556.
  • Stalder, J., A. Larsen, J. D. Engel, M. Dolan, M. Groudine, and H. Weintraub. 1980. Tissue-specific DNA cleavages in the globin chromatin domain introduced by DNAase I. Cell 20:451–460.
  • Towbin, H., T. Staehelin, and J. Gordon. 1979. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. USA 76:4350–4354.
  • Trask, D. K., J. D. DiDonato, and M. T. Muller. 1984. Rapid detection and isolation of covalent DNA/protein complexes: application to topoisomerase I and II. EMBO J. 3:671–676.
  • Trask, D. K., and M. T. Muller. 1983. Biochemical characterization of topoisomerase I purified from avian erythrocytes. Nucleic Acids Res. 11:2779–2800.
  • Uemura, T., H. Ohkura, Y. Adachi, K. Morino, K. Shiozaki, and Y. Yanagida. 1987. DNA topoisomerase II is required for condensation and separation of mitotic chromosomes in S. pombe. Cell 50:917–925.
  • Udvardy, A., P. Schedl, M. Sander, and T. Hsieh. 1986. Topoisomerase II cleavage in chromatin. J. Mol. Biol. 191:231–236.
  • Udvardy, A., P. Schedl, M. Sander, and T. Hsieh. 1986. Novel partitioning of DNA cleavage sites for drosophila topoisomerase II. Cell 40:933–941.
  • Uemura, T., and M. Yanagida. 1984. Isolation of type I and II DNA topoisomerase mutants from fission yeast: single and double mutants show different phenotypes in cell growth and chromatin organization. EMBO J. 3:1737–1744.
  • Uemura, T., and M. Yanagida. 1985. Mitotic spindle pulls but fails to separate chromosomes in type II DNA topoisomerase mutant: uncoordinated mitosis. EMBO J. 5:1003–1010.
  • Veldman, G., S. Lupton, and R. Kamen. 1985. Polyomavirus enhancer contains multiple redundant sequence elements that activate both DNA replication and gene expression. Mol. Cell. Biol. 5:649–658.
  • Vosberg, H.-P. 1985. DNA topoisomerases: enzymes that control DNA conformation. Curr. Top. Microbiol. Immunol. 114:19–101.
  • Wang, J. C. 1985. DNA topoisomerases. Annu. Rev. Biochem. 54:665–697.
  • Weintraub, H., and M. Groudine. 1976. Chromosomal subunits in active genes have an altered conformation. Science 193:848–856.
  • Weintraub, H., A. Larsen, and M. Groudine. 1981. Alphaglobin gene switching during the development of chicken embryos: expression and chromosome structure. Cell 24:333–344.
  • Wolffe, A. P., M. T. Andrews, E. Crawford, R. Lossa, and D. D. Brown. 1987. Negative supercoiling is not required for 5S RNA transcription in vitro. Cell 49:301–302.
  • Wood, S. H., and J. M. Collins. 1986. Preferential binding of DNA primase to the nuclear matrix in HeLa cells. J. Biol. Chem. 261:7119–7122.
  • Worcel, W. 1987. Negative supercoiling is not required for 5S RNA transcription in vitro. A reply. Cell 49:302–303.
  • Wu, C., and W. Gilbert. 1981. Tissue-specific exposure of chromatin structure at the 5′-terminus of the rat preproinsulin II gene. Proc. Natl. Acad. Sci. USA 78:1577–1580.
  • Yang, L., T. C. Rowe, E. M. Nelson, and L. F. Liu. 1985. In vivo mapping of DNA topoisomerase II-specific cleavage sites on SV40 chromatin. Cell 41:127–132.
  • Yaniv, M., and S. Cereghini. 1986. Structure of transcriptionally active chromatin. Crit. Rev. Biochem. 21:1–26.
  • Zenke, M., T. Grundstron, H. Matthes, M. Wintzerith, C. Schatz, A. Wilderman, and P. Chambon. 1986. Multiple sequence motifs are involved in SV40 enhancer function. EMBO J. 5:387–397.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.