3
Views
10
CrossRef citations to date
0
Altmetric
Research Article

Cysteine Residues in the Zinc Finger and Amino Acids Adjacent to the Finger Are Necessary for DNA Binding by the LAC9 Regulatory Protein of Kluyveromyces lactis

&
Pages 3726-3733 | Received 06 May 1988, Accepted 10 Jun 1988, Published online: 31 Mar 2023

LITERATURE CITED

  • Berg, J. M. 1986. Potential metal-binding domains in nucleic acid binding proteins. Science 232:485–487.
  • Blumberg, H., A. Eisen, A. Sledziewski, D. Bader, and E. T. Young. 1987. Two zinc fingers of a yeast regulatory protein shown by genetic evidence to be essential for its function. Nature (London) 328:443–445.
  • Chen, E. Y., and P. H. Seeburg. 1985. Supercoil sequencing: a fast and simple method for sequencing plasmid DNA. DNA 4:165–170.
  • Frankel, A. D., J. M. Berg, and C. O. Pabo. 1987. Metal-dependent folding of a single zinc finger from transcription factor IIIA. Proc. Natl. Acad. Sci. USA 84:4841–4845.
  • Green, S., and P. Chambon. 1987. Oestradiol induction of a glucocorticoid-responsive gene by a chimeric receptor. Nature (London) 325:75–78.
  • Hanas, J. S., D. J. Hazuda, D. F. Bogenhagen, F. Y.-H. Wu, and C.-W. Wu. 1983. Xenopus transcription factor A requires zinc for binding to the 5S RNA gene. J. Biol. Chem. 258:1420–1425.
  • Hartshorne, T. A., H. Blumberg, and E. T. Young. 1986. Sequence homology of the yeast regulatory protein ADRI with Xenopus transcription factor TFIIIA. Nature (London) 320:283–287.
  • Helhnann, G. M., S. T. Hiremath, J. G. Shaw, and R. E. Rhoads. 1986. Cistron mapping of tobacco vein mottling virus. Virology 151:159–171.
  • Hope, I. A., and K. Struhl. 1985. GCN4 protein, synthesized in vitro, binds HIS3 regulatory sequences: implications for general control of amino acid biosynthetic genes in yeast. Cell 43:177–188.
  • Johnston, M. 1987. Genetic evidence that zinc is an essential co-factor in the DNA binding domain of the GAL4 protein. Nature (London) 328:353–355.
  • Johnston, M., and J. Dover. 1987. Mutations that inactivate a yeast transcriptional regulatory protein cluster in an evolution-arily conserved DNA binding domain. Proc. Natl. Acad. Sci. USA 84:2401–2405.
  • Kammerer, B., A. Guyuonvarch, and J. C. Hubert. 1984. Yeast regulatory gene PPR1.1.Nucleotide sequence, restriction map, and codon usage. J. Mol. Biol. 180:239–250.
  • Keegan, L., G. Gui, and M. Ptashne. 1986. Separation of DNA binding from the transcription-activating function of a eukary-otic regulatory protein. Science 231:699–704.
  • Kunkel, T. A., J. D. Roberts, and R. A. Zakour. 1987. Rapid and efficient site-specific mytagenesis without phenotypic selection. Methods Enzymol. 154:367–382.
  • Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (London) 227:680–685.
  • Laughton, A., and R. F. Gesteland. 1984. Primary structure of the Saccharomyces cerevisiae GAL4 gene. Mol. Cell. Biol. 4:260–267.
  • Leonardo, J. M., S. M. Bhairi, and R. C. Dickson. 1987. Identification of upstream activator sequences that regulate induction of the β-galactosidase gene in Kluyveromyces lactis. Mol. Cell. Biol. 7:4369–4376.
  • Ma, J., and M. Ptashne. 1987. Deletion analysis of GAM defines two transcriptional activating segments. Cell 48:847–853.
  • Marsh, J. L., M. Erfle, and E. J. Wykes. 1984. The pIC plasmid and phage vectors with versatile cloning sites for recombinant selection by insertional inactivation. Gene 32:481–485.
  • Melton, D. A., P. A. Krieg, M. R. Rebagliati, T. Maniatis, K. Zinn, and M. R. Green. 1984. Efficient in vitro synthesis of biologically active RNA and RNA hybridization probes from plasmids containing a bacteriophage SP6 promoter. Nucleic Acids Res. 12:7035–7056.
  • Messenguy, F., E. Dubois, and F. Descamps. 1986. Nucleotide sequence of the ARGRII regulatory gene and amino acid sequence homologies between ARGRII, PPRI, and GAL4 regulatory proteins. Eur. J. Biochem. 157:77–81.
  • Miller, J., A. D. McLachlan, and A. Klug. 1985. Repetitive zinc-binding domains in the protein transcription factor IIIA from Xenopus oocytes. EMBO J. 4:1609–1614.
  • Pabo, C. O., and R. T. Sauer. 1984. Protein-DNA recognition. Annu. Rev. Biochem. 53:293–321.
  • Riley, M. I., and R. C. Dickson. 1984. Genetic and biochemical characterization of the galactose gene cluster in Kluyveromyces lactis. J. Bacteriol. 158:705–712.
  • Riley, M. I., J. E. Hopper, S. A. Johnston, and R. C. Dickson. 1987. GAL4 of Saccharomyces cerevisiae activates the lactose-galactose regulon of Kluyveromyces lactis and creates a new phenotype: glucose repression of the regulon. Mol. Cell. Biol. 7:780–786.
  • Ruzzi, M., K. D. Breunig, A. G. Ficca, and C. P. Norrenberg. 1987. Positive regulation of the β-galactosidase gene from Kluyveromyces lactis is mediated by an upstream activation site that shows homology to the GAL upstream activation site of Saccharomyces cerevisiae. Mol. Cell. Biol. 7:991–997.
  • Salmeron, J. M., Jr., and S. A. Johnston. 1986. Analysis of the Kluyveromyces lactis positive regulatory gene LAC9 reveals functional homology to, but sequence divergence from, the Saccharomyces cerevisiae GAZA gene. Nucleic Acids Res. 14:7767–7781.
  • Sanger, F., S. Nicklen, and A. R. Coulson. 1977. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74:5463–5467.
  • Wray, L. V., M. M. Witte, R. C. Dickson, and M. I. Riley. 1987. Characterization of a positive regulatory gene, LAC9, that controls induction of the lactose-galactose regulon of Kluyveromyces lactis: structural and functional relationships to GAL4 of Saccharomyces cerevisiae. Mol. Cell. Biol. 7:1111–1121.
  • Zhou, K., P. R. G. Brisco, A. E. Hinkkanen, and G. B. Kohlhaw. 1987. Structure of yeast regulatory gene LEU3 and evidence that LEU3 itself is under general amino acid control. Nucleic Acids Res. 15:5261–5273.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.