2
Views
8
CrossRef citations to date
0
Altmetric
Gene Expression

Upstream Regulatory Sequences of the Yeast RNR2 Gene Include a Repression Sequence and an Activation Site That Binds the RAP1 Protein

&
Pages 5359-5372 | Received 30 May 1989, Accepted 21 Aug 1989, Published online: 31 Mar 2023

LITERATURE CITED

  • Berman, J., C. Y. Tachibana, and B.-K. Tye. 1986. Identification of a telomere-binding activity from yeast. Proc. Natl. Acad. Sci. USA 83:3713–3717.
  • Bram, R. J., and R. D. Kornberg. 1985. Specific protein binding to far upstream activating sequences in polymerase II promoters. Proc. Natl. Acad. Sci. USA 82:43–47.
  • Buchman, A. R., W. J. Kimmerly, J. Rine, and R. D. Kornberg. 1988. Two DNA-binding factors recognize specific sequences at silencers, upstream activating sequences, autonomously replicating sequences, and telomeres in Saccharomyces cerevisiae Mol. Cell. Biol. 8:210–225.
  • Buchman, A. R., N. F. Lue, and R. D. Kornberg. 1988. Connections between transcriptional activators, silencers, and telomeres as revealed by functional analysis of a yeast DNA-binding protein. Mol. Cell. Biol. 8:5086–5099.
  • Casadaban, M. J., A. Martinez-Arias, S. K. Shapira, and J. Chou. 1983. β-Galactosidase gene fusions for analyzing gene expression in Escherichia coli and yeast. Methods Enzymol. 100:293–308.
  • Celenza, J. L., and M. Carlson. 1986. A yeast gene that is essential for release from glucose repression encodes a protein kinase. Science 233:1175–1180.
  • Cohen, R., T. Yokoi, J. P. Holland, A. E. Pepper, and M. J. Holland. 1987. Transcription of the constitutively expressed yeast enolase gene ENOl is mediated by positive and negative cw-acting regulatory sequences. Mol. Cell. Biol. 7:2753–2761.
  • Elledge, S. J., and R. W. Davis. 1987. Identification and isolation of the gene encoding the small subunit of ribonucleotide reductase from Saccharomyces cerevisiae: DNA damage-inducible gene required for mitotic viability. Mol. Cell. Biol. 7:2783–2793.
  • Favaloro, J., R. Treisman, and R. Kamen. 1980. Transcription maps of polyoma virus-specific RNA: analysis by two-dimensional nuclease SI gel mapping. Methods Enzymol. 65:718–749.
  • Fedor, M. J., N. F. Lue, and R. D. Kornberg. 1988. Statistical positioning of nucleosomes by specific protein-binding to an upstream activating sequence in yeast. J. Mol. Biol. 204:109–127.
  • Filpuia, D., and J. A. Fuchs. 1977. Regulation of ribonucleoside diphosphate reductase synthesis in Escherichia coli: increased enzyme synthesis as a result of inhibition of deoxyribonucleic acid synthesis. J. Bacteriol. 130:107–113.
  • Filpuia, D., and J. A. Fuchs. 1978. Regulation of the synthesis of ribonucleoside diphosphate reductase in Escherichia coli: specific activity of the enzyme in relationship to perturbations of DNA replication. J. Bacteriol. 135:429–435.
  • Goto, T., and J. C. Wang. 1982. Yeast topoisomerase II. An ATP-dependent type II topoisomerase that catalyzes the catenation, decatenation, unknotting, and relaxation of doublestranded DNA rings. J. Biol. Chem. 257:5866–5872.
  • Guarente, L., B. Lalonde, P. Gifford, and E. Alani. 1984. Distinctly regulated tandem upstream activation sites mediate catabolite repression of the CYC1 gene of S. cerevisiae. Cell 36:503–511.
  • Guarente, L., and M. Ptashne. 1981. Fusion of Escherichia coli lacZ to the cytochrome c gene of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 78:2199–2203.
  • Guthrie, C., N. Riedel, R. Parker, H. Swerdlow, and B. Patterson. 1986. Genetic analysis of snRNAs and RNA processing in yeast. UCLA Symp. Mol. Cell. Biol. 33:301–321.
  • Hahn, S., E. T. Hoar, and L. Guarente. 1985. Each of three “TATA elements” specifies a subset of the transcription initiation sites at the CYC1 promoter of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 82:8562–8566.
  • Hanke, P. D., and J. A. Fuchs. 1983. Regulation of ribonucleoside diphosphate reductase mRNA synthesis in Escherichia coli. J. Bacteriol. 154:1040–1045.
  • Hanke, P. D., and J. A. Fuchs. 1984. Requirement of protein synthesis for the induction of ribonucleoside diphosphate reductase mRNA in Escherichia coli. Mol. Gen. Genet. 193:327–331.
  • Harshman, K. D., W. S. Moye-Rowley, and C. S. Parker. 1988. Transcriptional activation by the SV40 AP-1 recognition element in yeast is mediated by a factor similar to AP-1 that is distinct from GCN4. Cell 53:321–330.
  • Hartwell, L. H.. 1973. Three additional genes required for deoxyribonucleic acid synthesis in Saccharomyces cerevisiae. J. Bacteriol. 115:966–974.
  • Hill, J. E., A. M. Myers, T. J. Koerner, and A. Tzagoloff. 1986. Yeast/E. coli shuttle vectors with multiple unique restriction sites. Yeast 2:163–167.
  • Huet, J., P. Cottrelle, M. Cool, M.-L. Vignais, D. Thiele, C. Marek, J.-M. Buhler, A. Sentenac, and P. Fromageot. 1985. A general upstream binding factor for genes of the yeast translational apparatus. EMBO J. 4:3539–3547.
  • Hurd, H. K., C. W. Roberts, and J. W. Roberts. 1987. Identification of the gene for the yeast ribonucleotide reductase small subunit and its inducibility by methyl methanesulfonate. Mol. Cell. Biol. 7:3673–3677.
  • Ito, H., Y. Fukoda, K. Murata, and A. Kimiera. 1983. Transformation of intact yeast cells treated with alkali ions. J. Bacteriol. 153:163–168.
  • Jakobsen, B. K., and H. R. B. Pelham. 1988. Constitutive binding of yeast heart shock factor to DNA in vivo. Mol. Cell. Biol. 8:5040–5042.
  • Johnston, L. H., J. H. M. White, A. L. Johnson, G. Lucchini, and P. Plevani. 1987. The yeast DNA polymerase I transcript is regulated in both the mitotic cell cycle and in meiosis and is also induced after DNA damage. Nucleic Acids Res. 15:5017–5030.
  • Kupiec, M., and G. Simchen. 1985. Arrest of the mitotic cell cycle and of meiosis in Saccharomyces cerevisiae by MMS. Mol. Gen. Genet. 201:558–564.
  • Kupiec, M., and G. Simchen. 1986. Regulation of the RAD6 gene of Saccharomyces cerevisiae in the mitotic cell cycle and in meiosis. Mol. Gen. Genet. 203:538–543.
  • Lammers, M., and H. Foilman. 1984. Deoxyribonucleotide biosynthesis in yeast {Saccharomyces cerevisiae). A ribonucleotide reductase system of sufficient activity for DNA synthesis. Eur. J. Biochem. 140:281–287.
  • Lis, J. T.. 1980. Fractionation of DNA fragments by polyethylene glycol induced precipitation. Methods in Enzymol. 65:347–353.
  • Little, J. W., and D. W. Mount. 1982. The SOS regulatory system of Escherichia coli. Cell 29:11–22.
  • Lowden, M., and E. Vitols. 1973. Ribonucleotide reductase activity during the cell cycle of Saccharomyces cerevisiae. Arch. Biochem. Biophys. 158:177–184.
  • Maniatis, T., E. F. Fritsch, and J. Sambrook. 1982. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Matsumoto, Y., K. Shigesada, M. Hirano, and M. Imai. 1986. Autogenous regulation of the gene for transcription termination factor rho in Escherichia coli: localization and function of its attenuators. J. Bacteriol. 166:945–958.
  • Maxam, A. M., and W. Gilbert. 1980. Sequencing end-labeled DNA with base-specific chemical cleavages. Methods Enzymol. 65:499–560.
  • Miller, J. H.. 1972. Experiments in molecular biology. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Nagawa, F., and G. R. Fink. 1985. The relationship between the “TATA” sequence and transcription initiation sites at the HIS4 gene of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 82:8557–8561.
  • Nishizawa, M., R. Araki, and Y. Teranishi. 1989. Identification of an upstream activating sequence and an upstream repressible sequence of the pyruvate kinase gene of the yeast Saccharomyces cerevisiae. Mol. Cell. Biol. 9:442–451.
  • Orr-Weaver, T. L., J. W. Szostak, and R. J. Rothstein. 1981. Yeast transformation: a model system for the study of recombination. Proc. Natl. Acad. Sci. USA 78:6354–6358.
  • Robinson, G. W., C. M. Nicolet, D. Kalainov, and E. C. Friedberg. 1986. A yeast excision-repair gene is inducible by DNA damaging agents. Proc. Natl. Acad. Sci. USA 83:1842–1846.
  • Rose, M., M. J. Casadaban, and D. Botstein. 1981. Yeast genes fused to β-galactosidase in Escherichia coli can be expressed normally in yeast. Proc. Natl. Acad. Sci. USA 78:2460–2464.
  • Rotenberg, M. O., and J. L. Woolford, Jr.. 1986. Tripartite upstream promoter element essential for expression of Saccharomyces cerevisiae ribosomal protein genes. Mol. Cell. Biol. 6:674–687.
  • Ruby, S., and J. W. Szostak. 1985. Specific Saccharomyces cerevisiae genes are expressed in response to DNA-damaging agents. Mol. Cell. Biol. 5:75–84.
  • Sclafani, R. A., and W. L. Fangman. 1984. Yeast gene CDC8 encodes thymidylate kinase and is complemented by herpes thymidine kinase gene TK. Proc. Natl. Acad. Sci. USA 81:5821–5825.
  • Sherman, F., G. R. Fink, and J. B. Hicks. 1983. Methods in yeast genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Shore, D., and K. Nasmyth. 1987. Purification and cloning of a DNA binding protein from yeast that binds to both silencer and activator elements. Cell 51:721–732.
  • Shore, D., D. J. Stillman, A. H. Brand, and K. A. Nasmyth. 1987. Identification of silencer binding proteins from yeast: possible roles in SIR control and DNA replication. EMBO J. 6:461–467.
  • Singh, H., J. H. LeBowtiz, A. S. Baldwin, Jr., and P. A. Sharp. 1988. Molecular cloning of an enhancer binding protein: isolation by screening of an expression library with a recognition site DNA. Cell 52:415–423.
  • Sorger, P. K., and H. R. B. Pelham. 1987. Purification and characterization of a heat-shock element binding protein from yeast. EMBO J. 6:3035–3041.
  • Strathern, J. N., E. W. Jones, and J. R. Broach. 1982. The molecular biology of the yeast Saccharomyces. Appendix. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Struhl, K.. 1986. Constitutive and inducible Saccharomyces cerevisiae promoters: evidence for two distinct molecular mechanisms. Mol. Cell. Biol. 6:3847–3853.
  • Struhl, K.. 1987. Promoters, activator proteins, and the mechanism of transcriptional initiation in yeast. Cell 49:295–297.
  • Thelander, L., and P. Reichard. 1979. Reduction of ribonucleotides. Annu. Rev. Biochem. 48:133–158.
  • Tomizawa, J.-I., H. Ohmori, and R. E. Bird. 1977. Origin of replication of colicin El plasmid DNA. Proc. Natl. Acad. Sci. USA 74:1865–1869.
  • Towbin, H. T., T. Staehelin, and J. Gordon. 1979. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. USA 76:4350–4354.
  • Tuggle, C. K., and J. A. Fuchs. 1986. Regulation of the operon encoding ribonucleotide reductase in Escherichia coli: evidence for both positive and negative control. EMBO J. 5:1077–1085.
  • Uemura, H., T. Shiba, M. Paterson, Y. Jigami, and H. Tanaka. 1986. Identification of a sequence containing the positive regulatory region of Saccharomyces cerevisiae gene ENO1. Gene 45:67–75.
  • Weinert, T., and L. H. Hartwell. 1988. The RAD9 gene controls the cell cycle response to DNA damage in Saccharomyces cerevisiae. Science 241:317–322.
  • Woudt, L. P., A. B. Smit, W. H. Mager, and R. J. Planta. 1986. Conserved sequence elements upstream of the gene encoding yeast ribosomal protein L25 are involved in transcription activation. EMBO J. 5:1037–1040.
  • Yocum, R., R. S. Hanley, R. West, Jr., and M. Ptashne. 1984. Use of lacZ fusions to delimit regulatory elements of the inducible divergent GAL1-GAL10 promoter in Saccharomyces cerevisiae. Mol. Cell. Biol. 4:1985–1998.
  • Young, R. A., and R. W. Davis. 1983. Yeast RNA polymerase II genes: isolation with antibody probes. Science 222:778–782.
  • Zagursky, R. J., K. Baumeister, N. Lomax, and M. L. Berman. 1985. Rapid and easy sequencing of large linear double-stranded DNA and supercoiled plasmid DNA. Gene Anal. Techn. 2:89–94.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.