2
Views
6
CrossRef citations to date
0
Altmetric
Gene Expression

Control of the Saccharomyces cerevisiae Regulatory Gene PET494: Transcriptional Repression by Glucose and Translational Induction by Oxygen

&
Pages 484-491 | Received 15 Jul 1988, Accepted 14 Oct 1988, Published online: 31 Mar 2023

LITERATURE CITED

  • Bailey, J. N., and McAllister W. T.. 1980. Mapping of promoter sites utilized by T3 RNA polymerase on T3 DNA. Nucleic Acids Res. 8:5071–5088.
  • Boeke, J. D., LaCroute F., and Fink G. R.. 1984. A positive selection for mutants lacking orotidine-5′-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance. Mol. Gen. Genet. 197:345–346.
  • Bradford, M. M.. 1976. A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal. Biochem. 72:248–254.
  • Cabral, F., and Schatz G.. 1978. Identification of cytochrome c oxidase subunits in nuclear yeast mutants lacking the functional enzyme. J. Biol. Chem. 253:4396–4401.
  • Carlson, M.. 1987. Regulation of sugar utilization in Saccharomyces species. J. Bacteriol. 169:4873–4877.
  • Carlson, M., Osmond B. C., and Botstein D.. 1981. Mutants of yeast defective in sucrose utilization. Genetics 98:25–40.
  • Carlson, M., Osmond B. C., Neigeborn L., and Botstein D.. 1984. A suppressor of SNF1 mutations causes constitutive high-level invertase synthesis in yeast. Genetics 107:19–32.
  • Casadaban, M. J., Martinez-Arias A., Shapira S. K., and Chou J.. 1983. β-Galactosidase gene fusions for analyzing gene expression in Escherichia coli and yeast. Methods Enzymol. 100:293–308.
  • Cohen, G., Fessl F., Traczyk A., Rytka J., and Ruis H.. 1989. Isolation of the catalase A gene of Saccharomyces cerevisiae by complementation of the ctal mutation. Mol. Gen. Genet. 200: 74–79.
  • Costanzo, M. C, and Fox T. D.. 1986. Product of Saccharomyces cerevisiae nuclear gene PET494 activates translation of a specific mitochondrial mRNA. Mol. Cell. Biol. 6:3694–3703.
  • Costanzo, M. C, and Fox T. D.. 1988. Specific translational activation by nuclear gene products occurs in the 5′ untranslated leader of a yeast mitochondrial mRNA. Proc. Natl. Acad. Sci. USA 85:2677–2681.
  • Costanzo, M. C, Mueller P. P., Strick C. A., and Fox T. D.. 1986. Primary structure of wild-type and mutant alleles of the PET494 gene of Saccharomyces cerevisiae. Mol. Gen. Genet. 202:294–301.
  • Costanzo, M. C, Seaver E. C., and Fox T. D.. 1986. At least two nuclear gene products are specifically required for translation of a single yeast mitochondrial mRNA. EMBO J. 5:3637–3641.
  • Costanzo, M. C, Seaver E. C., Marykwas D. L., and Fox T. D.. 1988. Multiple nuclear gene products are specifically required to activate translation of a single yeast mitochondrial mRNA, p. 373–382. In Tuite M. F., Picard M., and Bolotin-Fukuhara M. (ed.), Genetics of translation. Springer-Verlag KG, Berlin.
  • Downie, J. A., Stewart J. W., Brockman N., Schweingru-ber A. M., and Sherman F.. 1977. Structural gene for yeast iso-2-cytochrome c. J. Mol. Biol. 113:369–384.
  • Dujon, B.. 1981. Mitochondrial genetics and functions, p. 505–635. In Strathern J. N., Jones E. W., and Broach J. R. (ed.), The molecular biology of the yeast Saccharomyces: life cycle and inheritance. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Ebner, E., Mason T. L., and Schatz G.. 1973. Mitochondrial assembly in respiration-deficient mutants of Saccharomyces cerevisiae. II. Effect of nuclear and extrachromosomal mutations on the formation of cytochrome c oxidase. J. Biol. Chem. 248:5369–5378.
  • Entian, K.-D.. 1980. Genetic and biochemical evidence for hexokinase PII as a key enzyme involved in carbon catabolite repression in yeast. Mol. Gen. Genet. 178:633–637.
  • Falcone, C., Agostinelli M., and Frontali L.. 1983. Mitochondrial translation products during release from glucose repression in Saccharomyces cerevisiae. J. Bacteriol. 153:1125–1132.
  • Goldstein, A., and Lampen J. O.. 1975. β-D-Fructofuranoside fructohydrolase from yeast. Methods Enzymol. 42C:504–511.
  • Guarente, L., LaLonde B., Gifford P., and Alani E.. 1984. Distinctly regulated tandem upstream activation sites mediate catabolite repression of the CYC I gene of S. cerevisiae. Cell 36:503–511.
  • Guarente, L., and Mason T.. 1983. Heme regulates transcription of the CYC1 gene of S. cerevisiae via an upstream activation site. Cell 32:1279–1286.
  • Hortner, H., Ammerer G., Hartter E., Hamilton B., Rytka J., Bilinski T., and Ruis H.. 1982. Regulation of synthesis of catalases and iso-l-cytochrome c in Saccharomyces cerevisiae by glucose, oxygen and heme. Eur. J. Biochem. 128:179–184.
  • Hultmark, D., Klemenz R., and Gehring W. J.. 1986. Translational and transcriptional control elements in the untranslated leader of the heat-shock gene hsp22. Cell 44:429–438.
  • Ito, H., Fukuda Y., Murata K., and Kimura A.. 1983. Transformation of intact yeast cells treated with alkali cations. J. Bacteriol. 153:163–168.
  • Katz, R. A., Cullen B. R., Malavarca R., and Skalka A. M.. 1986. Role of the avian retrovirus mRNA leader in expression: evidence for novel translational control. Mol. Cell. Biol. 6: 372–379.
  • Keng, T., and Guarente L.. 1987. Constitutive expression of the yeast HEM1 gene is actually a composite of activation and repression. Proc. Natl. Acad. Sci. USA 84:9113–9117.
  • Kloeckener-Gruissem, B., McEwen J. E., and Poyton R. O.. 1988. Identification of a third nuclear protein-coding gene required specifically for posttranscriptional expression of the mitochondrial COX3 gene in Saccharomyces cerevisiae. J. Bacteriol. 170:1399–1402.
  • Lindquist, S., and McGarry T. J.. 1986. Translational control of heat shock proteins in Drosophila, p. 86–90. In Mathews M. B. (ed.), Translational control. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Logan, J., and Shenk T.. 1984. Adenovirus tripartite leader sequence enhances translation of mRNAs late after infection. Proc. Natl. Acad. Sci. USA 81:3655–3659.
  • Lowry, C. V., and Lieber R. H.. 1986. Negative regulation of the Saccharomyces cerevisiae ANB1 gene by heme, as mediated by the ROX1 gene product. Mol. Cell. Biol. 6:4145–4148.
  • Lowry, C. V., and Zitomer R. S.. 1984. Oxygen regulation of anaerobic and aerobic genes mediated by a common factor in yeast. Proc. Natl. Acad. Sci. USA 81:6129–6133.
  • Lowry, C. V., Weiss J. L., Walthall D. A., and Zitomer R. S.. 1983. Modulator sequences mediate oxygen regulation of CYC I and a neighboring gene in yeast. Proc. Natl. Acad. Sci. USA 80:151–155.
  • Ma, H., and Botstein D.. 1986. Effects of null mutations in the hexokinase genes of Saccharomyces cerevisiae on catabolite repression. Mol. Cell. Biol. 6:4046–4052.
  • Maniatis, T., Fritsch E. F., and Sambrook J.. 1982. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Mason, T. L., and Schatz G.. 1973. Cytochrome c oxidase from bakers' yeast II. Site of translation of the protein components. J. Biol. Chem. 248:1355–1360.
  • Mattoon, J. R., Lancashire W. E., Sanders H. K., Carvajal E., Malamud D. R., Braz G. R. C., and Panek A. D.. 1979. Oxygen and catabolite regulation of hemoprotein biosynthesis in yeast, p. 421–435. In Caughey W. S. (ed.), Biochemical and clinical aspects of oxygen. Academic Press, Inc., New York.
  • Maxam, A. M., and Gilbert W.. 1980. Sequencing end-labeled DNA with base-specific chemical cleavages. Methods Enzymol. 65:499–560.
  • McMaster, G. K., and Carmichael G. G.. 1977. Analysis of single and double-stranded nucleic acids on polyacrylamide and agarose gels by using glyoxal and acridine orange. Proc. Natl. Acad. Sci. USA 74:4835–4838.
  • Melton, D. A., Krieg P. A., Rebagliati M. R., Maniatis T., Zinn K., and Green M. R.. 1984. Efficient in vitro synthesis of biologically active RNA and RNA hybridization probes from plasmids containing a bacteriophage SP6 promoter. Nucleic Acids Res. 12:7035–7056.
  • Miller, J. H.. 1972. Experiments in molecular genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Mueller, D. M., and Getz G. S.. 1986. Steady state analysis of mitochondrial RNA after growth of yeast Saccharomyces cerevisiae under catabolite repression and derepression. J. Biol. Chem. 261:11816–11822.
  • Mueller, P. P., Harashima S., and Hinnebusch A. G.. 1987. A segment of GCN4 mRNA containing the upstream AUG codons confers translational control upon a heterologous yeast transcript. Proc. Natl. Acad. Sci. USA 84:2863–2867.
  • Müller, P. P., Reif M. K., Zonghou S., Sengstag C., Mason T. L., and Fox T. D.. 1984. A nuclear mutation that posttranscription-ally blocks accumulation of a yeast mitochondrial gene product can be suppressed by a mitochondrial gene rearrangement. J. Mol. Biol. 175:431–452.
  • Neigeborn, L., and Carlson M.. 1984. Genes affecting the regulation of SUC2 gene expression by glucose repression in Saccharomyces cerevisiae. Genetics 108:845–858.
  • Ng, R., and Abelson J.. 1980. Isolation and sequence of the gene for actin in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 77:3912–3916.
  • Polakis, E. S., Hartley W., and Meek G. A.. 1965. Changes in the activities of respiratory enzymes during the aerobic growth of yeast on different carbon sources. Biochem. j. 97:298–302.
  • Poutre, C. G., and Fox T. D.. 1987. PETlll, a Saccharomyces cerevisiae nuclear gene required for translation of the mitochondrial mRNA encoding cytochrome c oxidase subunit II. Genetics 115:637–647.
  • Power, S. D., Lochrie M. A., Sevarino K. A., Patterson T. E., and Poyton R. O.. 1984. The nuclear-coded subunits of yeast cytochrome c oxidase. I. Fractionation of the holoenzyme into chemically pure polypeptides and the identification of two new subunits using solvent extraction and reversed phase high performance liquid chromatography. J. Biol. Chem. 259:6564–6570.
  • Prezant, T., Pfeifer K., and Guarente L.. 1987. Organization of the regulatory region of the yeast CYC7 gene: multiple factors are involved in regulation. Mol. Cell. Biol. 7:3252–3259.
  • Rao, C. D., Pech M., Robbins K. C., and Aaronson S. A.. 1988. The 5′ untranslated sequence of the c-s/s/platelet-derived growth factor 2 transcript is a potent translational inhibitor. Mol. Cell. Biol. 8:284–292.
  • Rose, M., Casadaban M. J., and Botstein D.. 1981. Yeast genes fused to β-galactosidase in Escherichia coli can be expressed normally in yeast. Proc. Natl. Acad. Sci. USA 78:2460–2464.
  • Sherman, F., Fink G. R., and Hicks J. B.. 1986. Methods in yeast genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Sherman, F., Stewart J. W., Margoliash E., Parker J., and Campbell W.. 1966. The structural gene for yeast cytochrome c. Proc. Natl. Acad. Sci. USA 55:1498–1504.
  • Spevak, W., Fessl F., Rytka J., Traczyk A., Skoneczny M., and Ruis H.. 1983. Isolation of the catalase T structural gene of Saccharomyces cerevisiae by functional complementation. Mol. Cell. Biol. 3:1545–1551.
  • Spevak, W., Hartig A., Meindl P., and Ruis H.. 1986. Heme control region of the catalase T gene of the yeast Saccharomyces cerevisiae. Mol. Gen. Genet. 203:73–78.
  • Sprague, G. F., Jr., Jensen R., and Herskowitz I.. 1983. Control of yeast cell type by the mating type locus: positive regulation of the alpha-specific STE3 gene by the MATalpha1 product. Cell 32:409–415.
  • Strick, C. A., and Fox T. D.. 1987. Saccharomyces cerevisiae positive regulatory gene PETlll encodes a mitochondrial protein that is translated from an mRNA with a long 5′ leader. Mol. Cell. Biol. 7:2728–2734.
  • Szekely, E., and Montgomery D. L.. 1984. Glucose represses transcription of Saccharomyces cerevisiae nuclear genes that encode mitochondrial components. Mol. Cell. Biol. 4:939–946.
  • Thomas, P. S.. 1980. Hybridization of denatured RNA and small DNA fragments transferred to nitrocellulose. Proc. Natl. Acad. Sci. USA 77:5201–5205.
  • Tzamarias, D., Alexandraki D., and Thireos G.. 1986. Multiple c/s-acting elements modulate the translational efficiency of GCN4 mRNA in yeast. Proc. Natl. Acad. Sci. USA 83:4849–4853.
  • Werner, M., Feller A., Messenguy F., and Pierard A.. 1987. The leader peptide of yeast gene CPA1 is essential for the translational repression of its expression. Cell 49:805–813.
  • Woodrow, G., and Schatz G.. 1979. The role of oxygen in the biosynthesis of cytochrome c oxidase of yeast mitochondria. J. Biol. Chem. 254:6088–6093.
  • Zagorec, M., and Labbe-Bois R.. 1986. Negative control of yeast coproporphyrinogen oxidase synthesis by heme and oxygen. J. Biol. Chem. 261:2506–2509.
  • Zennaro, E., Grimaldi L., Baldacci G., and Frontali L.. 1989. Mitochondrial transcription and processing of transcripts during release from glucose repression in “resting cells” of Saccharomyces cerevisiae. Eur. J. Biochem. 147:191–196.
  • Zitomer, R. S., Sellers J. W., McCarter D. W., Hastings G. A., Wick P., and Lowry C. V.. 1987. Elements involved in oxygen regulation of the Saccharomyces cerevisiae CYC7 gene. Mol. Cell. Biol. 7:2212–2220.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.