2
Views
10
CrossRef citations to date
0
Altmetric
Gene Expression

Sequences within the Spacer Region of Yeast rRNA Cistrons That Stimulate 35S rRNA Synthesis In Vivo Mediate RNA Polymerase I-Dependent Promoter and Terminator Activities

, , , , &
Pages 1243-1254 | Received 11 Jul 1988, Accepted 06 Dec 1988, Published online: 31 Mar 2023

LITERATURE CITED

  • Bayev, A. A., Georgiev O. I., Hadjiolov A. A., Ker-mekchiev M. B., Nikolaev N., Skryavin K. G., and Zakharyev V. M.. 1980. The structure of the yeast ribosomal genes. II. The nucleotide sequence of the initiation site for ribosomal RNA transcription. Nucleic Acids Res. 8:4919–4926.
  • Cassidy, B. G., Yang-Yen H., and Rothblum L. I.. 1987. Additional RNA polymerase I initiation site within the nontran-scribed spacer region of the rat rRNA gene. Mol. Cell. Biol. 7:2388–2396.
  • DeWinter, R. F. J., and Moss T.. 1986. Spacer promoters are essential for efficient enhancement of X. laevis ribosomal transcription. Cell 44:313–318.
  • DeWinter, R. F. J., and Moss T.. 1986. The ribosomal spacer in Xenopus laevis is transcribed as part of the primary ribosomal RNA. Nucleic Acids Res. 14:6041–6051.
  • Elion, E. A., and Warner J. R.. 1984. The major promoter element of rRNA transcription in yeast lies 2kb upstream. Cell 39:663–673.
  • Elion, E. A., and Warner J. R.. 1986. An RNA polymerase I enhancer in Saccharomyces cerevisiae. Mol. Cell. Biol. 6: 2089–2097.
  • Grummt, I., Kuhn A., Bartsch I., and Rosenbauer H.. 1986. A transcription terminator located upstream of the mouse rDNA initiation site affects rRNA synthesis. Cell 47:901–911.
  • Grummt, I., Maier U., Ohrlein A., Hassouna N., and Bachellerie J. P.. 1989. Transcription of mouse rDNA terminates downstream of the 3′ end of 28S RNA and involves interaction of factors with repeated sequences in the 3′ spacer. Cell 43:801–810.
  • Hammond, C. I., and Holland M. J.. 1983. Purification of yeast RNA polymerases using heparin agarose affinity chromatography. J. Biol. Chem. 258:3230–3241.
  • Henderson, S., and Sollner-Webb B.. 1986. A transcriptional terminator is a novel element of the promoter of the mouse ribosomal RNA gene. Cell 47:891–900.
  • Holland, M. J., Hager G. L., and Rutter W. J.. 1977. Transcription of yeast DNAs by homologous RNA polymerases I and II: transcription of ribosomal genes by RNA polymerase I. Biochemistry 13:16–24.
  • Holland, M. J., Holland J. P., Thill G. P., and Jackson K. A.. 1981. The primary structures of two yeast enolase genes. J. Biol. Chem. 256:1385–1395.
  • Ito, H., Fukada Y., Murata K., and Kimura A.. 1983. Transformation of intact yeast cells treated with alkali cations. J. Bacteriol. 153:163–168.
  • Kempers-Veenstra, A. E., Oliemans J., Offenberg H., Dekker A. F., Piper P. W., Planta R. J., and Klootwijk J.. 1986. 3′-End formation of transcripts from the yeast rRNA operon. EMBO J. 5:2703–2710.
  • Kempers-Veenstra, A. E., van Heerikhuizen H., Musters W., Klootwijk J., and Planta R. J.. 1984. Transcription of an artificial ribosomal RNA gene in yeast. EMBO J. 3:1377–1382.
  • Kermekchiev, M. B., and Grummt I.. 1987. Natural point mutations within rat DNA transcription terminator elements reveal the functional importance of single bases for factor binding and termination. Nucleic Acids Res. 15:4131–4143.
  • Klemenz, R., and Geiduschek E. P.. 1980. The 5′ terminus of the precursor ribosomal RNA of Saccharomyces cerevisiae. Nucleic Acids Res. 8:2679–2689.
  • Klootwijk, J., de Jonge P., and Planta R. J.. 1979. The primary transcript of the ribosomal repeating unit in yeast. Nucleic Acids Res. 6:27–39.
  • Klootwijk, J., Verbeet M. P., Veldman G. M., de Regt V. C. H. F., van Heerikhuizen H., Bogerd J., and Planta R. J.. 1984. The in vivo and in vitro initiation site for transcription of the rRNA operon of Saccharomyces carlsbergensis. Nucleic Acids Res. 12:1377–1390.
  • Kohorn, B. D., and Rae P. M. M.. 1982. Nontranscribed spacer sequences promote in vitro transcription in Drosophila ribosomal DNA. Nucleic Acids Res. 10:6879–6886.
  • Lab hart, P., and Reeder R. H.. 1984. Enhancer-like properties of the 60/81 bp elements in the ribosomal gene spacer of X. laevis. Cell 37:285–289.
  • Lab hart, P., and Reeder R. H.. 1986. Characterization of three sites of RNA 3′ end formation in the Xenopus ribosomal gene spacer. Cell 45:431–443.
  • Lohr, D., and Ide G. I.. 1983. In vitro initiation and termination of ribosomal RNA transcription in isolated yeast nuclei. J. Biol. Chem. 258:4668–4671.
  • McStay, B., and Reeder R. H.. 1986. A termination site for Xenopus RNA polymerase I also acts as an element of an adjacent promoter. Cell 47:913–920.
  • Moss, T.. 1983. A transcriptional function for the repetitive ribosomal spacer in Xenopus laevis. Nature (London) 302: 223–228.
  • Nikolaev, N., Georgiev O. I., Venkov P. V., and Hadjiolov A. A.. 1979. The 37S precursor to ribosomal RNA is the primary transcript of ribosomal RNA genes in Saccharomyces cerevisiae. J. Mol. Biol. 127:297–308.
  • Petes, T. D.. 1980. Molecular genetics of yeast. Annu. Rev. Biochem. 49:845–876.
  • Quincey, R. V., and Godfrey R. E.. 1989. Upstream activation of ribosomal RNA biosynthesis in Saccharomyces cerevisiae. Biochem. J. 232:205–209.
  • Reeder, R. H., Roan J., and Dunaway M.. 1983. Spacer regulation of Xenopus ribosomal gene transcription: competition in oocytes. Cell 35:449–456.
  • Sanger, F., Coulson A. R., Barrell B. G., Smith A. J. H., and Roe B. A.. 1980. Cloning in single-stranded bacteriophage as an aid to rapid DNA sequencing. J. Mol. Biol. 143:161–178.
  • Sollner-Webb, B., and Tower J.. 1986. Transcription of cloned eukaryotic ribosomal RNA genes. Annu. Rev. Biochem. 55: 801–830.
  • Swanson, M. E., and Holland M. J.. 1983. RNA polymerase I-dependent selective transcription of yeast ribosomal DNA. J. Biol. Chem. 258:3242–3250.
  • Swanson, M. E., Yip M., and Holland M. J.. 1989. Characterization of an RNA polymerase I-dependent promoter within the spacer region of yeast ribosomal cistrons. J. Biol. Chem. 260:9905–9915.
  • Tautz, D., and Dover G. A.. 1986. Transcription of the tandem array of ribosomal DNA in Drosophila melanogaster does not terminate at any fixed point. EMBO J. 5:1267–1273.
  • Tekamp, P. A., Valenzuela P., Maynard T., Bell G. I., and Rutter W. J.. 1979. Specific gene transcription in yeast nuclei and chromatin by added homologous RNA polymerases I and II: selective transcription of ribosomal genes by RNA polymerase I. Biochemistry 13:16–24.
  • van Keulen, H., and Retel J.. 1977. Transcription specificity of yeast RNA polymerase A. Eur. J. Biochem. 79:579–588.
  • Windle, J. J., and Sollner-Webb B.. 1986. Two distantly and precisely positioned domains promote transcription of Xenopus laevis rRNA genes: analysis with linker-scanning mutants. Mol. Cell. Biol. 6:4585–4593.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.