3
Views
10
CrossRef citations to date
0
Altmetric
Gene Expression

Upstream Activation Sequence-Dependent Alteration of Chromatin Structure and Transcription Activation of the Yeast GAL1-GAL10 Genes

&
Pages 1721-1732 | Received 29 Aug 1988, Accepted 17 Jan 1989, Published online: 31 Mar 2023

LITERATURE CITED

  • Allegra, P., R. Sterner, D. F. Clayton, and V. G. Allfrey. 1987. Affinity chromatographic purification of nucleosomes containing transcriptionally active DNA sequences. J. Mol. Biol. 196:379–388.
  • Almer, A., and W. Hörz. 1986. Nuclease hypersensitive regions with adjacent positioned nucleosomes mark the gene boundaries of the PHO5/PHO3 locus in yeast. EMBO J. 5:2681–2687.
  • Almer, A., H. Rudolph, A. Hinnen, and W. Hörz. 1986. Removal of positioned nucleosomes from the yeast PHO5 promoter upon PHO5 induction releases additional upstream activating DNA elements. EMBO J. 5:2689–2696.
  • Baker, S. M., S. A. Johnston, J. E. Hopper, and J. A. Jaehning. 1987. Transcription of multiple copies of the yeast GAL7 gene is limited by specific factors in addition to GAL4. Mol. Gen. Genet. 208:127–134.
  • Beggs, J. D.. 1981. Multiple-copy yeast plasmid vectors, p. 383–389. In D. Von Wettstein, J. Frus, M. Kielland-Brandt, and A. Stenderup (ed.), Molecular genetics in yeast: proceedings of the Alfred Benzon symposium 16. State Mutual Book & Periodical Service, Ltd., New York.
  • Bergman, L. W.. 1986. A DNA fragment containing the upstream activator sequence determines nucleosome positioning of the transcriptionally repressed PHO5 gene of Saccharomyces cerevisiae. Mol. Cell. Biol. 6:2298–2304.
  • Bergman, L. W., and R. A. Kramer. 1983. Modulation of chromatin structure associated with derepression of the acid phosphatase gene of Saccharomyces cerevisiae. J. Biol. Chem. 258:7223–7227.
  • Bergman, L. W., M. C. Stranathan, and L. H. Preis. 1986. Structure of the transcriptionally repressed phosphate-repressible acid phosphatase gene (PHO5) of Saccharomyces cerevisiae. Mol. Cell. Biol. 6:38–46.
  • Berk, A. J., and P. A. Sharp. 1977. Sizing and mapping of early adenovirus mRNAs by gel electrophoresis of S1 endonuclease digested hybrids. Cell 12:721–732.
  • Bram, R. J., and R. D. Kornberg. 1985. Specific protein binding to far upstream activating sequences in polymerase II promoters. Proc. Natl. Acad. Sci. USA 82:43–47.
  • Cantoni, G. L., and A. Razin (ed.). 1985. Biochemistry and biology of DNA methylation. Proceedings of a Fogarty International Center Conference, Bethesda, Md., 17-19 April 1985. Prog. Clin. Biol. Res. 198.
  • Carlson, M., and D. Botstein. 1982. Two differentially regulated mRNAs with different 5′ ends encode secreted and intracellular forms of yeast invertase. Cell 28:145–154.
  • Cartwright, I. L., and S. C. R. Elgin. 1984. Chemical footprinting of 5S RNA chromatin in embryos. EMBO J. 3:3101–3108.
  • Cartwright, I. L., and S. C. R. Elgin. 1986. Nucleosomal instability and induction of new upstream protein-DNA associations accompany activation of four small heat shock protein genes in Drosophila melanogaster. Mol. Cell. Biol. 6:779–791.
  • Cartwright, I. L., R. P. Hertzberg, P. B. Dervan, and S. C. R. Elgin. 1983. Cleavage of chromatin with methidiumpropyl- EDTA-iron (II). Proc. Natl. Acad. Sci. USA 80:3213–3217.
  • Chomczynski, P., and P. K. Qasba. 1984. Alkaline transfer of DNA to plastic membrane. Biochem. Biophys. Res. Commun. 122:340–344.
  • Cimino, G. D., H. B. Gamper, S. F. Isaacs, and J. E. Hearst. 1985. Psoralens as photoactive probes of nucleic acid structure and function: organic chemistry, photochemistry, and biochemistry. Annu. Rev. Biochem. 54:1151–1193.
  • Dorbic, T., and B. Wittig. 1987. Chromatin from transcribed genes contains HMG17 only downstream from the starting point of transcription. EMBO J. 6:2393–2399.
  • Eissenberg, J. C., I. L. Cartwright, G. H. Thomas, and S. C. R. Elgin. 1985. Selected topics in chromatin structure. Annu. Rev. Genet. 19:485–536.
  • Emerson, B. M., and G. Felsenfeld. 1984. Specific factor conferring nuclease hypersensitivity at the 5′ end of the chicken adult ß-globin gene. Proc. Natl. Acad. Sci. USA 81:95–99.
  • Fedor, M. J., N. F. Lue, and R. D. Kornberg. 1988. Statistical positioning of nucleosomes by specific protein-binding to an upstream activating sequence in yeast. J. Mol. Biol. 204:109–127.
  • Feinberg, A. P., and B. Vogelstein. 1983. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal. Biochem. 132:6–13.
  • Giniger, E., S. M. Varnum, and M. Ptashne. 1985. Specific DNA binding of GAL4, a positive regulatory protein of yeast. Cell 40:767–774.
  • Hartley, J. L., and D. E. Donelson. 1980. Nucleotide sequence of the yeast plasmid. Nature (London) 286:860–864.
  • Hashimoto, H., Y. Kikuchi, Y. Nogi, and T. Fukasawa. 1983. Regulation of expression of the galactose gene cluster in Saccharomyces cerevisiae: isolation and characterization of the regulatory gene GAL4. Mol. Gen. Genet. 191:31–38.
  • Hebbes, T. R., A. W. Thorne, and C. Crane-Robinson. 1988. A direct link between core histone acetylation and transcriptionally active chromatin. EMBO J. 7:1395–1402.
  • Huang, S.-Y., M. B. Barnard, M. Xu, S. Matsui, S. M. Rose, and W. T. Garrard. 1986. The active immunoglobulin κ chain gene is packaged by non-ubiquitin-conjugated nucleosomes. Proc. Natl. Acad. Sci. USA 83:3738–3742.
  • Igo-Kemenes, T., W. Hörz, and H. G. Zachau. 1982. Chromatin. Annu. Rev. Biochem. 51:89–121.
  • Ito, H., Y. Fukada, K. Murata, and A. Kimura. 1983. Transformation of intact yeast cells treated with alkali cations. J. Bacteriol. 153:163–168.
  • Johnston, M.. 1987. A model fungal gene regulatory mechanism: the GAL genes of Saccharomyces cerevisiae. Microbiol. Rev. 51:458–476.
  • Johnston, M., and R. W. Davis. 1984. Sequences that regulate the divergent GAL1-GAL10 promoter in Saccharomyces cerevisiae. Mol. Cell. Biol. 4:1440–1448.
  • Johnston, S. A., and J. E. Hopper. 1982. Isolation of yeast regulatory gene GAL4 and analysis of its dosage effects on the galactose/melibiose regulon. Proc. Natl. Acad. Sci. USA 79:6971–6975.
  • Jongstra, J., T. L. Reudelhuber, P. Oudet, C. Benoist, C.-B. Chae, J.-M. Jeltsch, D. J. Mathis, and P. Chambon. 1984. Induction of altered chromatin structure by simian virus 40 enhancer and promoter elements. Nature (London) 307:708–714.
  • Kmiec, E. B., F. Razvi, and A. Worcel. 1986. The role of DNA-mediated transfer of TFIIIA in the concerted gyration and differential activation of the Xenopus 5S RNA genes. Cell 45:209–218.
  • Kmiec, E. B., M. Ryoji, and A. Worcel. 1986. Gyration is required for 5S RNA transcription from a chromatin template. Proc. Natl. Acad. Sci. USA 83:1305–1309.
  • Knezetic, J. A., and D. S. Luse. 1986. The presence of nucleosomes on a DNA template prevents initiation by RNA polymerase II in vitro. Cell 45:95–104.
  • Lohr, D.. 1983. The chromatin structure of an actively expressed, single copy yeast gene. Nucleic Acids Res. 11:6755–6773.
  • Lohr, D.. 1984. Organization of the GAL1-10 intergenic control region in chromatin. Nucleic Acids Res. 12:8457–8474.
  • Lohr, D., and J. E. Hopper. 1985. The relationship of regulatory proteins and DNase I hypersensitive sites in the yeast GAL1-10 genes. Nucleic Acids Res. 13:8409–8423.
  • Lohr, D., T. Torchia, and J. Hopper. 1987. The regulatory protein GAL80 is a determinant of the chromatin structure of the yeast GAL1-10 control region. J. Biol. Chem. 262:15589–15597.
  • Lorch, Y., and R. D. Kornberg. 1985. A region flanking the GAL7 gene and a binding site for GAL4 protein as upstream activating sequences in yeast. J. Mol. Biol. 186:821–824.
  • Lorch, Y., J. W. LaPointe, and R. D. Kornberg. 1987. Nucleosomes inhibit the initiation of transcription but allow chain elongation with the displacement of histones. Cell 49:203–210.
  • Losa, R., and D. D. Brown. 1987. A bacteriophage RNA polymerase transcribes in vitro through a nucleosome core without displacing it. Cell 50:801–808.
  • Matsui, T.. 1987. Transcription of adenovirus 2 major late and peptide IX genes under conditions of in vitro nucleosome assembly. Mol. Cell. Biol. 7:1401–1408.
  • McGhee, J. D., W. I. Wood, M. Dolan, J. D. Engel, and G. Felsenfeld. 1981. A 200 base pair region at the 5′ end of the chicken adult ß-globin gene is accessible to nuclease digestion. Cell 27:45–55.
  • Nedospasov, S. A., and G. P. Georgiev. 1980. Non-random cleavage of SV40 DNA in the compact minichromosome and free in solution by micrococcal nuclease. Biochem. Biophys. Res. Commun. 92:532–539.
  • Pederson, D. S., F. Thoma, and R. T. Simpson. 1986. Core particle, fiber, and transcriptionally active chromatin structure. Annu. Rev. Cell Biol. 2:117–147.
  • Petryniak, B., and L. C. Lutter. 1987. Topological characterization of the simian virus 40 transcription complex. Cell 48:289–295.
  • Proffit, J. H.. 1985. DNase I-hypersensitive sites in the galactose gene cluster of Saccharomyces cerevisiae. Mol. Cell. Biol. 5:1522–1524.
  • Prunell, A., and R. D. Kornberg. 1977. Relation of nucleosomes to DNA sequences. Cold Spring Harbor Symp. Quant. Biol. 42:103–108.
  • Reeves, R.. 1984. Transcriptionally active chromatin. Biochim. Biophys. Acta 782:343–393.
  • Rose, M., and D. Botstein. 1983. Structure and function of the yeast URA3 gene. J. Mol. Biol. 170:883–904.
  • Selleck, S. B., and J. E. Majors. 1987. Photofootprinting in vivo detects transcription-dependent changes in TATA boxes. Nature (London) 325:173–177.
  • Sellect, S. B., and J. E. Majors. 1987. In vivo DNA-binding properties of a yeast transcription activator protein. Mol. Cell. Biol. 7:3260–3267.
  • Solomon, M. J., P. L. Larsen, and A. Varshavsky. 1988. Mapping protein-DNA interactions in vivo with formaldehyde: evidence that histone H4 is retained on a highly transcribed gene. Cell 53:937–947.
  • St. John, T. P., and R. W. Davis. 1981. The organization and transcription of the galactose gene cluster of Saccharomyces. J. Mol. Biol. 152:285–315.
  • Struhl, K.. 1985. Nucleotide sequence and transcriptional mapping of the yeast pet56-his3-dedl gene region. Nucleic Acids Res. 13:8587–8601.
  • Sun, Y. L., Y. Z. Ku, M. Bellard, and P. Chambon. 1986. Digestion of chicken ß-globin gene chromatin with micrococcal nuclease reveals the presence of an altered nucleosomal array characterized by an atypical ladder of DNA fragments. EMBO J. 5:293–300.
  • Thoma, F.. 1986. Protein-DNA interactions and nuclease-sensitive regions determine nucleosome positions on yeast plasmid chromatin. J. Mol. Biol. 190:177–190.
  • Tschumper, G., and J. Carbon. 1980. Sequence of a yeast DNA fragment containing a chromosomal replicator and the TRP1 gene. Gene 10:157–166.
  • Varshavsky, A. J., O. H. Sundin, and M. J. Bohn. 1979. A stretch of “late” SV40 viral DNA about 400 bp long which includes the origin of replication is specifically exposed in SV40 minichromosomes. Cell 16:453–466.
  • Villeponteau, B., and H. G. Martinson. 1987. Gamma rays and bleomycin nick DNA and reverse the DNase I sensitivity of ß-globin chromatin in vivo. Mol. Cell. Biol. 7:1917–1924.
  • Wasylyk, B., and P. Chambon. 1979. Transcription by eukaryotic RNA polymerases A and B of chromatin assembled in vitro. Eur. J. Biochem. 98:317–327.
  • Wasylyk, B., and P. Chambon. 1980. Studies on the mechanism of transcription of nucleosomal complexes. Eur. J. Biochem. 103:219–226.
  • Wasylyk, B., G. Thevenin, P. Oudet, and P. Chambon. 1979. Transcription of in vitro assembled chromatin by Escherichia coli RNA polymerase. J. Mol. Biol. 128:411–440.
  • Weisbrod, S.. 1982. Active chromatin. Nature (London) 297:289–295.
  • Williamson, P., and G. Felsenfeld. 1978. Transcription of histone-covered T4 DNA by Escherichia coli RNA polymerase. Biochemistry 17:5695–5705.
  • Workman, S. L., and R. G. Roeder. 1987. Binding of transcription factor TFIID to the major late promoter during in vitro nucleosome assembly potentiates subsequent initiation by RNA polymerase II. Cell 51:613–622.
  • Wu, C.. 1980. The 5′ ends of Drosophila heat shock genes in chromatin are hypersensitive to DNase I. Nature (London) 286:854–860.
  • Wu, C.. 1984. Two protein-binding sites in chromatin implicated in the activation of heat shock genes. Nature (London) 309:229–234.
  • Wu, C.. 1984. Activating protein factor binds in vitro to upstream control sequences in heat shock gene chromatin. Nature (London) 311:81–84.
  • Yaniv, M., and S. Cereghini. 1986. Structure of transcriptionally active chromatin. Crit. Rev. Biochem. 21:1–26.
  • Zakian, V. A., and J. F. Scott. 1982. Construction, replication, and chromatin structure of TRP1 RI circle, a multiple-copy synthetic plasmid derived from Saccharomyces cerevisiae chromosomal DNA. Mol. Cell. Biol. 2:221–232.
  • Zaret, K. S., and K. R. Yamamoto. 1984. Reversible and persistent changes in chromatin structure accompany activation of a glucocorticoid dependent enhancer element. Cell 38:29–38.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.