12
Views
59
CrossRef citations to date
0
Altmetric
Gene Expression

Identification of a Myocyte Nuclear Factor That Binds to the Muscle-Specific Enhancer of the Mouse Muscle Creatine Kinase Gene

&
Pages 2627-2640 | Received 13 Dec 1988, Accepted 09 Mar 1989, Published online: 31 Mar 2023

LITERATURE CITED

  • Arnold, H. H., E. Tannich, and B. M. Paterson. 1988. The promoter of the chicken cardiac myosin light chain 2 gene shows cell-specific expression in transfected primary cultures of chicken muscle. Nucleic Acids Res. 16:2411–2429.
  • Atchison, M. L., and R. P. Perry. 1987. The role of the κ benhancer and its binding factor NF-κB in the developmental regulation of κ gene transcription. Cell 48:121–128.
  • Bader, D., T. Masaki, and D. A. Fischman. 1982. Biochemical analysis of myosin heavy chain during avian myogenesis in vivo and in vitro. J. Cell Biol. 95:763–770.
  • Baldwin, T. J., and S. J. Burden. 1988. Isolation and characterization of the mouse acetylcholine receptor delta subunit gene: identification of a 148-bp cis-acting region that confers myotubespecific expression. J. Cell Biol. 107:2271–2279.
  • Bergsma, D. J., J. M. Grichnik, L. M. A. Gossett, and R. J. Schwartz. 1986. Delimitation and characterization of cis-acting DNA sequences required for the regulated expression and transcriptional control of the chicken skeletal α-actin gene. Mol. Cell. Biol. 6:2462–2475.
  • Billeter, R., W. Quitschke, and B. M. Paterson. 1988. Approximately 1 kilobase of sequence 5′ to the two myosin light-chain lf/3f gene cap sites is sufficient for differentiation-dependent expression. Mol. Cell. Biol. 8:1361–1365.
  • Blau, H. M., G. K. Pavlath, E. C. Hardeman, C.-P. Chiu, L. Silberstein, S. G. Webster, S. C. Miller, and C. Webster. 1985. Plasticity of the differentiated state. Science 230:758–766.
  • Bouvagnet, P. F., E. E. Strehler, G. E. White, M. A. StrehlerPage, B. Nadal-Ginard, and V. Mahdavi. 1987. Multiple positive and negative 5′ regulatory elements control the cell-type-specific expression of the embryonic skeletal myosin heavy-chain gene. Mol. Cell. Biol. 7:4377–4389.
  • Braun, T., G. Buschhausen-Denker, E. Bober, E. Tannich, and H. H. Arnold. 1989. A novel human muscle factor related to but distinct from MyoD1 induces myogenic conversion in 10T1/2 fibroblasts. EMBO J. 8:701–709.
  • Church, G. M., A. Ephrussi, W. Gilbert, and S. Tonegawa. 1985. Cell-type-specific contacts to immunoglobulin enhancers in nuclei. Nature (London) 313:798–801.
  • Clegg, C. H., T. A. Linkhart, B. B. Olwin, and S. D. Hauschka. 1987. Growth factor control of skeletal muscle differentiation: commitment to terminal differentiation occurs in G1 phase and is repressed by fibroblast growth factor. J. Cell Biol. 105:949–956.
  • Cockerill, P. N., and W. T. Garrard. 1986. Chromosomal loop anchorage of the kappa Ig gene locus next to the enhancer in a region containing topoisomerase II sites. Cell 44:273–282.
  • Davis, R. L., H. Weintraub, and A. B. Lassar. 1987. Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell 51:987–1000.
  • Dignam, J. D., R. M. Lebovitz, and R. G. Roeder. 1983. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 11:1475–1489.
  • Donoghue, M., H. Ernst, B. Wentworth, B. Nadal-Ginard, and N. Rosenthal. 1988. A muscle-specific enhancer is located at the 3′ end of the myosin light-chain 1/3 gene locus. Genes Dev. 2:1779–1790.
  • Dynan, W. S., and R. Tjian. 1983. The promoter-specific transcription factor Sp1 binds to upstream sequences in the SV40 early promoter. Cell 35:79–87.
  • Ephrussi, A., G. M. Church, S. Tonegawa, and W. Gilbert. 1985. B lineage-specific interactions of an immunoglobulin enhancer with cellular factors in vivo. Science 227:134–140.
  • Fried, M., and D. M. Crothers. 1981. Equilibria and kinetics of lac-repressor-operator interactions by polyacrylamide gel electrophoresis. Nucleic Acids Res. 9:6505–6525.
  • Galas, D. J., and A. Schmitz. 1978. DNAase footprinting: a simple method for the detection of protein-DNA binding specificity. Nucleic Acids Res. 5:3157–3170.
  • Gasser, S. M., and U. K. Laemmli. 1986. Cohabitation of scaffold binding regions with upstream/enhancer elements of three developmentally regulated genes of D. melanogaster. Cell 46:521–530.
  • Gorman, C. M., L. F. Moffat, and B. H. Howard. 1982. Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells. Mol. Cell. Biol. 2:1044–1051.
  • Gorman, C., R. Padmanabhan, and B. H. Howard. 1983. High efficiency transformation of primate cells. Science 221:551–553.
  • Grichnik, J. M., B. A. French, and R. J. Schwartz. 1988. The chicken skeletal α-actin gene promoter region exhibits partial dyad symmetry and a capacity to drive bidirectional transcription. Mol. Cell. Biol. 8:4587–4597.
  • Gustafson, T. A., T. Miwa, L. M. Boxer, and L. Kedes. 1988. Interaction of nuclear proteins with muscle-specific regulatory sequences of the human cardiac a-actin promoter. Mol. Cell. Biol. 8:4110–4119.
  • Helfman, D. M., S. Cheley, E. Kuismanen, L. A. Finn, and Y. Yamawaki-Kataoka. 1986. Nonmuscle and muscle tropomyosin isoforms are expressed from a single gene by alternative RNA splicing and polyadenylation. Mol. Cell. Biol. 6:3582–3595.
  • Henthorn, P., P. Zervos, M. Raducha, H. Harris, and T. Kadesch. 1988. Expression of a human placental alkaline phosphatase gene in transfected cells: use as a reporter for studies of gene expression. Proc. Natl. Acad. Sci. USA 85:6342–6346.
  • Hoopes, B. C., and W. R. McClure. 1981. Studies on the selectivity of DNA precipitation by spermine. Nucleic Acids Res. 9:5493–5504.
  • Horlick, R. A., and P. A. Benfield. 1988. Regulation of the rat muscle creatine kinase promoter during myogenesis, p. 767–776. In F. Stockdale, and L. Kedes (ed.), Cellular and molecular biology of muscle development. Alan R. Liss, Inc., New York.
  • Horlick, R. A., and P. A. Benfield. 1989. The upstream musclespecific enhancer of the rat muscle creatine kinase gene is composed of multiple elements. Mol. Cell. Biol. 9:2396–2413.
  • Imagawa, M., R. Chiu, and M. Karin. 1987. Transcription factor AP-2 mediates induction by two different signal-transduction pathways: protein kinase C and cAMP. Cell 51:251–260.
  • Jaynes, J. B., J. S. Chamberlain, J. N. Buskin, J. E. Johnson, and S. D. Hauschka. 1986. Transcriptional regulation of the muscle creatine kinase gene and regulated expression in transfected mouse myoblasts. Mol. Cell. Biol. 6:2855–2864.
  • Jaynes, J. B., J. E. Johnson, J. N. Buskin, C. L. Gartside, and S. D. Hauschka. 1988. The muscle creatine kinase gene is regulated by multiple upstream elements, including a musclespecific enhancer. Mol. Cell. Biol. 8:62–70.
  • Klarsfeld, A., P. Daubas, B. Bourachot, and J. P. Changeux. 1987. A 5′-flanking region of the chicken acetylcholine receptor α-subunit gene confers tissue specificity and developmental control of expression in transfected cells. Mol. Cell. Biol. 7:951–955.
  • Klein, S., F. Sablitzky, and A. Radbruch. 1984. Deletion of the IgH enhancer does not reduce immunoglobulin heavy chain production of a hybridoma IgD class switch variant. EMBO J. 3:2473–2476.
  • Konieczny, S. F., A. S. Baldwin, and C. P. Emerson. 1986. Myogenic determination and differentiation of 10T1/2 cell lineages: evidence for a simple genetic regulatory system, p. 21–34. In C. Emerson, D. Fischman, B. Nadal-Ginard, and M. A. Q. Siddiqui (ed.). Molecular biology of muscle development. Alan R. Liss, Inc., New York.
  • Konieczny, S. F., and C. P. Emerson, Jr.. 1987. Complex regulation of the muscle-specific contractile protein (troponin I) gene. Mol. Cell. Biol. 7:3065–3075.
  • Lim, R. W., and S. D. Hauschka. 1984. EGF responsiveness and receptor regulation in normal and differentiation-defective mouse myoblasts. Dev. Biol. 105:48–58.
  • Linkhart, T. A., C. H. Clegg, and S. D. Hauschka. 1980. Control of mouse myoblast commitment to terminal differentiation by mitogens. J. Supramol. Struct. 14:483–498.
  • Maniatis, T., E. F. Fritsch, and J. Sambrook. 1982. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Markham, B. E., J. J. Bahl, T. A. Gustafson, and E. Morkin. 1987. Interaction of a protein factor within a thyroid hormonesensitive region of rat α-myosin heavy chain gene. J. Biol. Chem. 262:12856–12862.
  • Maxam, A. M., and W. Gilbert. 1980. Sequencing end-labeled DNA with base-specific chemical cleavages. Methods Enzymol. 65:499–560.
  • Minty, A., and L. Kedes. 1986. Upstream regions of the human cardiac actin gene that modulate its transcription in muscle cells: presence of an evolutionarily conserved repeated motif. Mol. Cell. Biol. 6:2125–2136.
  • Mitchell, P. J., C. Wang, and R. Tjian. 1987. Positive and negative regulation of transcription in vitro: enhancer-binding protein AP-2 is inhibited by SV40 T antigen. Cell 50:847–861.
  • Miwa, T., and L. Kedes. 1987. Duplicated CArG box domains have positive and mutually dependent regulatory roles in expression of the human «-cardiac actin gene. Mol. Cell. Biol. 7:2803–2813.
  • Mohun, T. J., N. Garrett, and J. B. Gurdon. 1986. Upstream sequences required for tissue-specific activation of the cardiac actin gene in Xenopus laevis embryos. EMBO J. 5:3185–3193.
  • Murre, C., P. McCaw, and D. Baltimore. 1989. A new DNA binding and dimerization motif in immunoglobulin enhancer binding, daughterless, MyoD. and myc proteins. Cell 56:777–783.
  • Muscat, G. E. O., T. A. Gustafson, and L. Kedes. 1988. A common factor regulates skeletal and cardiac α-actin gene transcription in muscle. Mol. Cell. Biol. 8:4120–4133.
  • Muscat, G. E. O., and L. Kedes. 1987. Multiple 5′-flanking regions of the human α-skeletal actin gene synergistically modulate muscle specific expression. Mol. Cell. Biol. 7:4089–4099.
  • Neumann, J. R., C. A. Morency, and K. O. Russian. 1987. A novel rapid assay for chloramphenicol acetyltransferase gene expression. BioTechniques 5:444–447.
  • Olwin, B. B., and S. D. Hauschka. 1986. Identification of the fibroblast growth factor receptor of Swiss 3T3 cells and mouse skeletal muscle myoblasts. Biochemistry 25:3487–3492.
  • Pieper, F. R., R. L. Slobbe, F. C. S. Ramaekers, H. T. Cuypers, and H. Bloemendal. 1987. Upstream regions of the hamster desmin and vimentin genes regulate expression during in vitro myogenesis. EMBO J. 6:3611–3618.
  • Pinney, D. F., S. H. Pearson-White, S. F. Konieczny, K. E. Latham, and C. P. Emerson, Jr.. 1988. Myogenic lineage determination and differentiation: evidence for a regulatory gene pathway. Cell 53:781–793.
  • Reichel, R., I. Kovesdi, and J. R. Nevins. 1988. Activation of a preexisting cellular factor as a basis for adenovirus E1A- mediated transcription control. Proc. Natl. Acad. Sci. USA 85:387–390.
  • Sawadoga, M., and R. G. Roeder. 1985. Interaction of a genespecific transcription factor with the adenovirus major late promoter upstream of the TATA box region. Cell 43:165–175.
  • Sealy, L., and R. Chalkey. 1987. At least two nuclear proteins bind specifically to the Rous sarcoma virus long terminal repeat enhancer. Mol. Cell. Biol. 7:787–798.
  • Sen, R., and D. Baltimore. 1986. Inducibility of κ immunoglobulin enhancer-binding protein NF-κB by a posttranslational mechanism. Cell 47:921–928.
  • Sen, R., and D. Baltimore. 1986. Multiple nuclear factors interact with the immunoglobulin enhancer sequences. Cell 46:705–716.
  • Solomon, M. J., F. Strauss, and A. Varshavsky. 1986. A mammalian high mobility group protein recognizes any stretch of six A · T base pairs in duplex DNA. Proc. Natl. Acad. Sci. USA 83:1276–1280.
  • Sternberg, E. A., G. Spizz, W. M. Perry, D. Vizard, T. Weil, and E. N. Olson. 1988. Identification of upstream and intragenic regulatory elements that confer cell-type-restricted and differentiation-specific expression on the muscle creatine kinase gene. Mol. Cell. Biol. 8:2896–2909.
  • Tapscott, S. J., R. L. Davis, M. J. Thayer, P.-F. Cheng, H. Weintraub, and A. B. Lassar. 1988. MyoD1: a nuclear phosphoprotein requiring a myc homology region to convert fibroblasts to myoblasts. Science 242:405–411.
  • Taylor, S. M., and P. A. Jones. 1979. Multiple new phenotypes induced in 10T1/2 and 3T3 cells treated with 5-azacytidine. Cell 17:771–779.
  • Trask, R. V., A. W. Strauss, and J. J. Biliadello. 1988. Developmental regulation and tissue-specific expression of the human muscle creatine kinase gene. J. Biol. Chem. 263:17142–17149.
  • Vieira, J., and J. Messing. 1987. Production of single-stranded plasmid DNA. Methods Enzymol. 153:3–11.
  • Walsh, K., and P. Schimmel. 1987. Two nuclear factors compete for the skeletal muscle actin promoter. J. Biol. Chem. 262:9429–9432.
  • Walsh, K., and P. Schimmel. 1988. DNA-binding site for two skeletal actin promoter factors is important for expression in muscle cells. Mol. Cell. Biol. 8:1800–1802.
  • Wang, X.-F., and K. Calame. 1986. SV40 enhancer-binding factors are required at the establishment but not the maintenance step of enhancer-dependent transcriptional activation. Cell 47:241–247.
  • Wang, Y., H.-P. Xu, X.-M. Wang, M. Ballivet, and J. Schmidt. 1988. A cell type-specific enhancer drives expression of the chick muscle acetylcholine receptor α-subunit gene. Neuron 1:527–534.
  • Wright, W. E., D. A. Sassoon, and V. K. Lin. 1989. Myogenin, a factor regulating myogenesis, has a domain homologous to MyoD. Cell 56:607–617.
  • Yaffe, D., and O. Saxel. 1977. Serial passaging and differentiation of myogenic cells isolated from dystrophic mouse muscle. Nature (London) 270:725–727.
  • Yamamoto, K. R.. 1985. Steroid receptor regulated transcription of specific genes and gene networks. Annu. Rev. Genet. 19:209–252.
  • Yutzey, K. E., R. L. Kline, and S. F. Konieczny. 1989. An internal regulatory element controls troponin I gene expression. Mol. Cell. Biol. 9:1397–1405.
  • Zoller, M., T. Atkinson, and M. Smith. 1983. Oligonucleotide- directed mutagenesis of DNA fragments cloned into M13- derived vectors: manual for advanced techniques in molecular cloning course. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.