0
Views
3
CrossRef citations to date
0
Altmetric
Chromosome Structure and Dynamics

Composite Transposable Elements in the Xenopus laevis Genome

, &
Pages 3017-3027 | Received 07 Mar 1989, Accepted 21 Apr 1989, Published online: 31 Mar 2023

LITERATURE CITED

  • Barker, R. F., D. V. Thompson, D. R. Talbot, J. A. Swanson, and J. L. Bennetzen. 1984. Nucleotide sequence of the maize transposable element Mu1. Nucleic Acids Res. 12:5955–5967.
  • Boeke, J. D., D. J. Garfinkel, C. A. Styles, and G. R. Fink. 1985. Ty elements transpose through an RNA intermediate. Cell 40:491–500.
  • Burke, W. D., C. C. Calalang, and T. H. Eickbush. 1987. The site-specific ribosomal insertion element type II of Bombyx mori (R2Bm) contains the coding sequence for a reverse transcriptase-like enzyme. Mol. Cell. Biol. 7:2221–2230.
  • Carroll, D., J. E. Garrett, and B. S. Lam. 1984. Isolated clusters of paired tandemly repeated sequences in the Xenopus laevis genome. Mol. Cell. Biol. 4:254–259.
  • Carroll, D., D. S. Knutzon, and J. E. Garrett. 1989. Transposable elements in Xenopus species, p. 567–574. In M. M. Howe, and D. E. Berg (ed.), Mobile DNA. American Society for Microbiology, Washington, D.C.
  • Carroll, D., S. H. Wright, R. K. Wolff, E. Grzesiuk, and E. B. Maryon. 1986. Efficient homologous recombination of linear DNA substrates after injection into Xenopus laevis oocytes. Mol. Cell. Biol. 6:2053–2061.
  • Church, G. M., and W. Gilbert. 1986. Genomic sequencing. Proc. Natl. Acad. Sci. USA 81:1991–1995.
  • Covey, S. N.. 1986. Amino acid sequence homology in gag region of reverse transcribing elements and the coat protein of cauliflower mosaic virus. Nucleic Acids Res. 14:623–633.
  • D'Ambrosio, E., S. D. Waitzkin, F. R. Witney, A. Salemme, and A. V. Furano. 1986. Structure of the highly repeated, long interspersed DNA family (LINE or L1Rn) of the rat. Mol. Cell. Biol. 6:411–424.
  • Dente, L., M. Sollazzo, C. Baldari, G. Cesareni, and R. Cortese. 1985. The pEMBL family of single-stranded vectors, p. 101–107. In D. M. Glover (ed.), DNA cloning, vol. 1. A practical approach. IRL Press, Washington, D.C.
  • Di Nocera, P. P., and G. Casari. 1987. Related polypeptides are encoded by Drosophila F elements, I factors and mammalian LI sequences. Proc. Natl. Acad. Sci. USA 84:5843–5847.
  • Doring, H.-P., and P. Starlinger. 1984. Barbara McClintock's controlling elements: now at the DNA level. Cell 39:253–259.
  • Doring, H.-P., and P. Starlinger. 1986. Molecular genetics of transposable elements in plants. Annu. Rev. Genet. 20:175–200.
  • Emmons, S. W., and L. Yesner. 1984. High-frequency excision of transposable element Tc1 in the nematode Caenorhahditis elegans is limited to somatic cells. Cell 36:599–605.
  • Fawcett, D. H., C. K. Lister, E. Kellett, and D. J. Finnegan. 1986. Transposable elements controlling I-R hybrid dysgenesis in D. melanogaster are similar to mammalian LINEs. Cell 47:1007–1015.
  • Fedoroff, N. V.. 1989. About maize transposable elements and development. Cell 56:181–191.
  • Feinberg, A. P., and B. Vogelstein. 1983. A technique for radiolabeling DNA restriction fragments to high specific activity. Anal. Biochem. 132:6–13.
  • Fink, G. R., J. D. Boeke, and D. J. Garfinkel. 1986. The mechanism and consequences of retrotransposition. Trends Genet. 2:118–122.
  • Finnegan, D. J.. 1985. Transposable elements in eukaryotes. Int. Rev. CytoL 93:281–326.
  • Furano, A. V., S. M. Robb, and F. T. Robb. 1988. The structure of the regulatory region of the rat L1 (L1Rn, long interspersed repeated) DNA family of transposable elements. Nucleic Acids Res. 16:9215–9231.
  • Garfinkel, D. J., J. D. Boeke, and G. R. Fink. 1985. Ty element transposition: reverse transcriptase and virus-like particles. Cell 42:507–517.
  • Garrett, J. E., and D. Carroll. 1986. Txl: a transposable element from Xenopus laevis with some unusual properties. Mol. Cell. Biol. 6:933–941.
  • Georgiev, G. P.. 1984. Mobile genetic elements in animal cells and their biological significance. Eur. J. Biochem. 145:203–220.
  • Gough, J. A., and N. E. Murray. 1983. Sequence diversity among related genes for recognition of specific targets in DNA molecules. J. Mol. Biol. 166:1–19.
  • Greenblatt, I. M.. 1974. Movement of Modulator in maize: a test of an hypothesis. Genetics 77:671–678.
  • Gurdon, J. B., and M. P. Wickens. 1983. The use of Xenopus oocytes for the expression of cloned genes. Methods Enzymol 101:370–386.
  • Hattori, M., S. Kuhara, O. Takenaka, and Y. Sakaki. 1986. L1 family of repetitive DNA sequences in primates may be derived from a sequence encoding a reverse transcriptase-related protein. Nature (London) 321:625–628.
  • Henikoff, S.. 1984. One-way exonucleolytic digestion to target deletion end-points for DNA sequencing. Gene 28:331–359.
  • Howe, M. M., and D. E. Berg (ed.). 1989. Mobile DNA. American Society for Microbiology, Washington, D.C.
  • Kimmel, B. E., O. K. Ole-Moiyoi, and J. R. Young. 1987. Ingi, a 5.2-kb dispersed sequence element from Trypanosoma brucei that carries half of a smaller mobile element at either end and has homology with mammalian LINEs. MoL Cell. BioL 7:1465–1475.
  • Kingsman, A. J., K. F. Chater, and S. M. Kingsman (ed.). 1988. Transposition. Cambridge University Press, Cambridge.
  • Kuiper, M. T. R., and A. M. Lambowitz. 1988. A novel reverse transcriptase activity associated with mitochondrial plasmids of Neurospora. Cell 55:693–704.
  • Lam, B. S., and D. Carroll. 1983. Tandemly repeated DNA sequences from Xenopus laevis. II. Dispersed clusters of a 388 bp repeating unit. J. MoL BioL 165:587–597.
  • Legerski, R. J., J. E. Penkala, C. A. Peterson, and D. A. Wright. 1987. Repair of UV-induced lesions in Xenopus laevis oocytes. MoL Cell. BioL 7:4317–4323.
  • Loeb, D. D., R. W. Padgett, S. C. Hardies, W. R. Shehee, M. B. Comer, M. H. Edgell, and C. A. Hutchison III. 1986. The sequence of a large L1Md element reveals a tandemly repeated 5′ end and several features found in retrotransposons. MoL Cell. Biol. 6:168–182.
  • Maniatis, T., E. F. Fritsch, and J. Sambrook. 1982. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • McClintock, B.. 1984. The significance of responses of the genome to challenge. Science 226:792–801.
  • Mellor, J., M. Malim, K. Gull, M. F. Tuite, S. McCready, T. Dibbayawan, S. M. Kingsman, and A. J. Kingsman. 1985. Reverse transcriptase activity and Ty RNA are associated with virus-like particles in yeast. Nature (London) 318:583–586.
  • Mizrokhi, L. J., S. G. Georgieva, and Y. V. Ilyin. 1988. Jockey, a mobile Drosophila element similar to mammalian LINEs, is transcribed from the internal promoter by RNA polymerase II. Cell 54:685–691.
  • Mount, S. M., and G. M. Rubin. 1985. Complete nucleotide sequence of the Drosophila transposable element copia: homology between copia and retroviral proteins. MoL Cell. BioL 5:1630–1638.
  • Nur, L., E. Pascale, and A. V. Furano. 1988. The left end of rat L1 (L1Rn, long interspersed repeated) DNA which is a CpG island can function as a promoter. Nucleic Acids Res. 16:9233–9251.
  • O'Hare, K., and G. M. Rubin. 1983. Structure of P transposable elements and their sites of insertion and excision in the Drosophila melanogaster genome. Cell 34:25–35.
  • Padgett, R. W., C. A. Hutchison III, and M. H. Edgell. 1988. The F-type 5′ motif of mouse L1 elements: a major class of L1 termini similar to the A-type in organization but unrelated in sequence. Nucleic Acids Res. 16:739–749.
  • Russel, M., S. Kidd, and M. R. Kelley. 1986. An improved filamentous helper phage for generating single-stranded plasmid DNA. Gene 45:333–338.
  • Sanger, F., S. Nicklen, and A. R. Coulson. 1977. DNA sequencing with chain-terminating inhibitors. Proc. NatL Acad. Sci. USA 74:5463–5467.
  • Schwarz-Sommer, Z., L. Leclercq, E. Gobel, and H. Saedler. 1987. Cin4, an insert altering the structure of the Al gene in Zea mays, exhibits properties of nonviral retrotransposons. EMBO J. 6:3873–3880.
  • Shapiro, J. A. (ed.). 1983. Mobile genetic elements. Academic Press, Inc., New York.
  • Shiba, T., and K. Saigo. 1983. Retrovirus-like particles containing RNA homologous to the transposable element copia in Drosophila melanogaster. Nature (London) 302:119–124.
  • Singer, M. F., and J. Skowronski. 1985. Making sense out of LINEs: long interspersed repeat sequences in mammalian genomes. Trends Biochem. Sci. 10:119–122.
  • Truett, M. A., R. S. Jones, and S. S. Potter. 1981. Unusual structure of the FB family of transposable elements in Drosophila. Cell 24:753–763.
  • Voliva, C. F., C. L. Jahn, M. B. Comer, C. A. Hutchison III, and M. H. Edgell. 1983. The L1Md long interspersed repeat family in the mouse: almost all examples are truncated at one end. Nucleic Acids Res. 11:8847–8859.
  • Wahli, W., and I. B. Dawid. 1980. Isolation of two closely related vitellogenin genes, including their flanking regions, from a Xenopus laevis gene library. Proc. Natl. Acad. Sci. USA 77:1437–1441.
  • Xiong, Y., and T. H. Eickbush. 1988. Similarity of reverse transcriptase-like sequences of viruses, transposable elements, and mitochondrial introns. Mol. Biol. Evol. 5:675–690.
  • Xiong, Y., and T. H. Eickbush. 1988. The site-specific ribosomal DNA insertion element R1Bm belongs to a class of non- long-terminal-repeat retrotransposons. Mol. Cell. Biol. 8:114–123.
  • Xiong, Y., and T. H. Eickbush. 1988. Functional expression of a sequence-specific endonuclease encoded by the retrotransposon R2Bm. Cell 55:235–246.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.