4
Views
22
CrossRef citations to date
0
Altmetric
Gene Expression

Identification of Multiple Proteins That Interact with Functional Regions of the Human Cardiac α-Actin Promoter

&
Pages 3269-3283 | Received 23 Jan 1989, Accepted 24 Apr 1989, Published online: 31 Mar 2023

LITERATURE CITED

  • Baeuerle P. A., and D. Baltimore. 1988. IκB: a specific inhibitor of the NF-κB transcription factor. Science 242:540–546.
  • Bains, W. P., H. Ponte, H. Blau, and L. Kedes. 1984. Cardiac actin is the major actin gene product in skeletal muscle cell differentiation in vitro. Mol. Cell. Biol. 5:1034–1042.
  • Baldwin, A. S., E. L. W. Kittler, and C. P. Emerson. 1985. Structure, evolution, and regulation of a fast skeletal muscle troponin I gene. Proc. Natl. Acad. Sci. USA 82:8080–8084.
  • Baldwin, A. S., and P. A. Sharp. 1988. Two transcription factors, NF-κB and H2TF1, interact with a single regulatory sequence in the class I major histocompatibility complex promoter. Proc. Natl. Acad. Sci. USA 85:723–727.
  • Barberis, A., G. Superti-Furga, and M. Busslinger. 1987. Mutually exclusive interaction of the CCAAT-binding factor and a displacement protein with overlapping sequences of a histone gene promoter. Cell 50:347–359.
  • Barnhart, K. M., C. G. Kim, S. S. Banerji, and M. Sheffery. 1988. Identification and characterization of multiple erythroid cell proteins that interact with the promoter of the murine α-globin gene. Mol. Cell. Biol. 8:3215–3226.
  • Baumhueter, S., G. Courtois, and G. R. Crabtree. 1988. A variant nuclear protein in dedifferentiated hepatoma cells binds to the same functional sequences in the β-fibrinogen gene promoter as HNF-1. EMBO J. 7:2485–2493.
  • Bergsma, D. J., J. M. Grichnik, L. M. A. Gossett, and R. J. Schwartz. 1986. Delimitization and characterization of cis-acting DNA sequences required for the regulated expression and transcriptional control of the chicken skeletal α-actin gene. Mol. Cell. Biol. 6:2462–2475.
  • Bouvagnet, P. F., E. E. Strehler, G. E. White, B. Strehler-Page, B. Nadal-Ginard, and V. Mahdavi. 1987. Multiple positive and negative 5′ regulatory elements control the cell-type-specific expression of the embryonic skeletal myosin heavy-chain gene. Mol. Cell. Biol. 7:4377–4389.
  • Boxer, L. M., R. Prywes, R. G. Roeder, and L. Kedes. 1989. The sarcomeric actin CArG-binding factor is indistinguishable from the c-fos serum response factor. Mol. Cell. Biol. 9:515–522.
  • Bradford, M. M.. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248–254.
  • Caravatti, M., A. Minty, B. Robert, D. Montarras, A. Weydert, A. Cohen, P. Daubas, and M. Buckingham. 1982. The accumulation of messenger RNAs coding for muscle-specific proteins during myogenesis in a mouse cell line. J. Mol. Biol. 60:59–76.
  • Chamberlain, J. S., J. B. Jaynes, and S. D. Hauschka. 1985. Regulation of creatine kinase induction in differentiating muscle myoblasts. Mol. Cell. Biol. 5:484–492.
  • Chodosh, L. A., A. S. Baldwin, R. W. Carthew, and P. A. Sharp. 1988. Human CCAAT-binding proteins have heterologous sub-units. Cell 53:11–24.
  • Dawson, P. A., S. L. Hofmann, D. R. van der Westhuyzen, T. C. Sudhof, M. S. Brown, and J. L. Goldstein. 1988. Sterol-dependent repression of low density lipoprotein receptor promoter mediated by 16 bp sequence adjacent to binding site for transcription factor Sp1. J. Biol. Chem. 263:3372–3379.
  • Devlin, R. B., and C. P. Emerson. 1979. Coordinate accumulation of contractile protein mRNAs during myoblast differentiation. Dev. Biol. 69:202–216.
  • Dignam, J. D., R. M. Lebowitz, and R. G. Roeder. 1983. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 11:1475–1489.
  • Evans, T., T. DeChiara, and A. Efstratiadis. 1988. A promoter of the rat insulin-like growth factor II gene consists of minimal control elements. J. Mol. Biol. 199:61–81.
  • Fried, M., and D. M. Crothers. 1981. Equilibrium and kinetics of lac repressor-operator interactions by Polyacrylamide gel electrophoresis. Nucleic Acids Res. 9:6505–6525.
  • Galas, D. J., and A. Schmitz. 1978. DNAsel footprinting: a simple method for the detection of protein-DNA binding specificity. Nucleic Acids Res. 5:3157–3171.
  • Garner, I., A. J. Minty, S. Alonso, P. J. Barton, and M. E. Buckingham. 1986. A 5′ duplication of the cardiac actin gene in BALB/c mice is associated with abnormal levels of cardiac and skeletal actin mRNAs in adult cardiac tissue. EMBO J. 5:2559–2567.
  • Garner, M. M., and A. Revzin. 1981. A gel electrophoresis method for quantifying the binding of proteins to specific DNA regions: application to the components of the E. coli lactose operon regulatory system. Nucleic Acids Res. 9:3047–3059.
  • Gidoni, D., W. S. Dynan, and R. Tjian. 1984. Multiple specific contacts between a mammalian transcription factor and its cognate promoters. Nature (London) 312:409–413.
  • Goodbourn, S., and T. Maniatis. 1988. Overlapping positive and negative regulatory domains of the human β-interferon gene. Proc. Natl. Acad. Sci. USA 85:1447–1451.
  • Gunning, P., P. Ponte, H. Blau, and L. Kedes. 1983. α-Skeletal and α-cardiac actin genes are coexpressed in adult human skeletal muscle and heart. Mol. Cell. Biol. 3:1985–1995.
  • Gustafson, T. A., T. Miwa, L. M. Boxer, and L. Kedes. 1988. Interaction of nuclear proteins with muscle-specific regulatory sequences of the human cardiac α-actin promoter. Mol. Cell. Biol. 8:4110–4119.
  • Hai, T., F. Liu, E. A. Allegretto, M. Karin, and M. R. Green. 1988. A family of immunologically related transcription factors that includes multiple forms of ATF and AP-1. Genes Dev. 2:1216–1226.
  • Hayward, L. J., and R. J. Schwartz. 1982. Sequential expression of chicken actin genes during myogenesis. J. Cell. Biol. 2:1044–1051.
  • Jackson, S. P., and R. Tjian. 1988. O-glycosylation of eukary-otic transcription factors: implications for mechanisms of transcriptional regulation. Cell 55:125–133.
  • Jones, K. A., J. T. Kadonaga, P. A. Luciw, and R. Tjian. 1986. Activation of the AIDS retrovirus promoter by the cellular transcription factor, Spl. Science 232:755–759.
  • Jones, K. A., J. T. Kadonaga, P. J. Rosenfeld, T. J. Kelly, and R. Tjian. 1987. A cellular DNA-binding protein that activates eukaryotic transcription and DNA replication. Cell 48:79–89.
  • Jones, K. A., K. R. Yamamoto, and R. Tjian. 1985. Two distinct transcription factors bind to the HSV thymidine kinase promoter in vitro. Cell 42:559–572.
  • Kadonaga, J. T., K. A. Jones, and R. Tjian. 1986. Promoter-specific activation of RNA polymerase II transcription by Sp1. Trends Biochem. Sci. 11:20–23.
  • Kessler, D. S., D. E. Levy, and J. È. Darnell. 1988. Two interferon-induced nuclear factors bind a single promoter element in interferon-stimulated genes. Proc. Natl. Acad. Sci. USA 85:8521–8525.
  • Lee, W. A., M. Haslinger, M. Karin, and R. Tjian. 1987. Activation of transcription by two factors which bind promoter and enhancer sequences of the human metallothionein gene and SV40. Nature (London) 325:368–372.
  • Lichtsteiner, S., J. Wuarin, and U. Schibler. 1987. The interplay of DNA-binding proteins on the promoter of the mouse albumin gene. Cell 51:963–973.
  • Maniatis, T., S. Goodbourn, and J. A. Fischer. 1987. Regulation of inducible and tissue-specific expression. Science 236:1237–1244.
  • Maxam, A. M., and W. Gilbert. 1980. Sequencing end-labeled DNA with base specific chemical cleavages. Methods Enzymol. 65:499–560.
  • Mayer, Y., H. Czosnek, P. Zeelon, D. Yaffe, and U. Nudel. 1984. Expression of the genes coding for the skeletal and cardiac actins in the heart. Nucleic Acids Res. 12:1087–1100.
  • Minty, A., H. Blau, and L. Kedes. 1986. Two-level regulation of cardiac actin gene transcription: muscle-specific modulating factors can accumulate before gene activation. Mol. Cell. Biol. 6:2137–2148.
  • Minty, A., and L. Kedes. 1986. Upstream regions of the human cardiac actin gene that modulate its transcription in muscle cells: presence of an evolutionarily conserved repeated motif. Mol. Cell. Biol. 6:2125–2136.
  • Miwa, T., L. M. Boxer, and L. Kedes. 1987. CArG boxes in the human cardiac α-actin gene are core binding sites for positive trans-acting regulatory factors. Proc. Natl. Acad. Sci. USA 84:6702–6706.
  • Miwa, T., and L. Kedes. 1987. Duplicated CArG box domains have positive and mutually dependent regulatory roles in expression of the human α-cardiac actin gene. Mol. Cell. Biol. 7:2803–2813.
  • Mizushima-Sugano, J., and R. G. Roeder. 1986. Cell-type-specific transcription of an immunoglobulin k light chain gene in vitro. Proc. Natl. Acad. Sci. USA 83:8511–8515.
  • Morgan, J. G., G. Courtois, G. Fourel, L. Chodosh, L. Campbell, E. Evans, and G. R. Crabtree. 1988. Sp1, a CAAT-binding factor, and the adenovirus major late promoter transcription factor interact with functional regions of the gamma-fibrinogen promoter. Mol. Cell. Biol. 8:2628–2637.
  • Morgan, W. D., G. T. Williams, R. I. Morimoto, J. Greene, R. E. Kingston, and R. Tjian. 1987. Two transcriptional activators, CCAAT-box-binding transcription factor and heat shock transcription factor, interact with a human hsp70 gene promoter. Mol. Cell. Biol. 7:1129–1138.
  • Muscat, G. E. O., T. A. Gustafson, and L. Kedes. 1988. A common factor regulates expression of the cardiac and skeletal actin genes in muscle cells. Mol. Cell. Biol. 8:4120–4133.
  • Muscat, G. E. O., and L. Kedes. 1987. Multiple 5′-flanking regions of the human α-skeletal actin gene synergistically modulate muscle-specific expression. Mol. Cell. Biol. 7:4089–4099.
  • Phan-Dinh-Tuy, F., D. Tuil, F. Schweighoffer, C. Pinset, A. Kahn, and A. Minty. 1988. The CCAArGG box: a protein binding site common to transcription regulatory regions of the cardiac actin, c-fos, and interleukin-2 receptor genes. Eur. J. Biochem. 173:507–515.
  • Raymondjean, M., S. Cereghini, and M. Yaniv. 1988. Several distinct “CCAAT” box binding proteins coexist in eukaryotic cells. Proc. Natl. Acad. Sci. USA 85:757–761.
  • Reznikoff, W. S., D. A. Siegele, D. W. Cowing, and C. A. Gross. 1985. The regulation of transcriptional initiation in bacteria. Annu. Rev. Genet. 19:355–387.
  • Santoro, C., N. Mermod, P. C. Andrews, and R. Tjian. 1988. A family of human CCAAT-box-binding proteins activate transcription and DNA replication: cloning and expression of multiple cDNAs. Nature (London) 334:218–224.
  • Sawadago, M., and R. G. Roeder. 1985. Interaction of a gene-specific transcription factor with the adenovirus major late promoter upstream of the TATA box region. Cell 43:165–175.
  • Siebenlist, U., and W. Gilbert. 1980. Contacts between E. coli RNA polymerase and an early promoter of phage T7. Proc. Natl. Acad. Sci. USA 77:122–126.
  • Superti-Furga, G., A. Barberis, G. Schaffner, and M. Busslinger. 1988. The -117 mutation in Greek HPFH affects the binding of three nuclear factors to the CCAAT region of the γ-globin gene. EMBO J. 7:3099–3107.
  • Treisman, R.. 1986. Identification of a protein binding site that mediates transcriptional response of the c-fos gene to serum factors. Cell 46:567–574.
  • Vandekerckhove, J., G. Bugiasky, and M. Buckingham. 1982. Simultaneous expression of skeletal muscle and heart actin protein in various striated muscle tissues and cells. J. Biol. Chem. 261:1838–1843.
  • Walsh, K., and P. Schimmel. 1987. Two nuclear factors compete for the skeletal muscle actin promoter. J. Biol. Chem. 262:9429–9432.
  • Xiao, J. H., I. Davidson, D. Ferrandon, R. Rosales, M. Vigeron, M. Macchi, F. Ruffenach, and P. Chambon. 1987. One cell-specific and three ubiquitous nuclear proteins bind in vitro to overlapping motifs in the domain Bl of the SV40 enhancer. EMBO J. 6:3005–3013.
  • Yaffe, D., and O. Saxel. 1977. Serial passaging and differentiation of myogenic cells isolated from dystrophic mouse muscle. Nature (London) 270:725–727.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.