447
Views
26
CrossRef citations to date
0
Altmetric
Full papers

Design of Bio-inspired Flexible Wings for Flapping-Wing Micro-sized Air Vehicle Applications

&
Pages 979-1002 | Published online: 02 Apr 2012

References

  • Shyy , W. and Ljungqvist , B. M. 1999 . Flapping and flexible wings for biological and micro air vehicle . Progr. Aerospace Sci. , 35 : 455 – 505 .
  • Lian , Y. , Wei , S. , Viieru , D. and Zhang , B. 2003 . Membrane wing aerodynamics for micro air vehicles . Prog. Aerospace Sci. , 39 : 425 – 465 .
  • Stanford , B. , Ifju , P. , Albertani , R. and Shyy , W. 2008 . Fixed membrane wings for micro air vehicles: experimental characterization, numerical modeling, and tailoring . Prog. Aerospace Sci. , 44 : 258 – 294 .
  • Ho , S. , Nassef , H. , Pornsinsirirak , N. , Tai , Y.-C. and Ho , C.-M. 2003 . Unsteady aerodynamics and flow control for flapping wing flyers . Prog. Aerospace Sci. , 39 : 635 – 681 .
  • Ifju , P. G. , Ettinger , S. , Jenkins , D. A. , Lian , Y. , Shyy , W. and Waszak , M. R. Flexible-wing-based micro air vehicles . Proc. 40th AIAA Aero Sci. Meeting . Reno , NV : AIAA–0705 .
  • Stanford , B. , Sytsma , M. , Albertani , R. , Viieru , D. , Shyy , W. and Ifju , P. 2007 . Static aeroelastic model validation of membrane micro air vehicle wings . AIAA J. , 45 : 2828 – 2837 .
  • Kurien , I. and Agrawal , S. K. 2007 . An investigation into the use of springs and wing motions to minimize the power expended by a pigeon-sized mechanical bird for steady flight . J. Mech. Des. Trans. ASME , 129 : 381 – 389 .
  • Madangopal , R. , Khan , Z. A. and Agrawal , S. K. 2006 . Energetics-based design of small flapping-wing micro air vehicles . IEEE/ASME Trans. Mechatron. , 11 : 433 – 438 .
  • Kim , D.-K. , Kim , H.-I. , Han , J.-H. and Kwon , K.-J. 2008 . Experimental investigation on the aerodynamic characteristics of a bio-mimetic flapping wing with macro-fiber composites . J. Intell. Mater. Syst. Struct. , 19 : 423 – 431 .
  • Zdunich , P. , Bilyk , D. , MacMaster , M. , Loewen , D. , DeLaurier , J. , Kornbluh , R. , Low , T. , Stanford , S. and Holeman , D. 2007 . Development and testing of the mentor flapping-wing micro air vehicle . J. Aircraft , 44 : 1701 – 1710 .
  • Willmott , A. P. and Ellington , C. P. 1997 . The mechanics of flight in the hawkmoth Manduca sexta: I. Kinematics of hovering and forward flight . J. Exp. Biol. , 200 : 2705 – 2722 .
  • Willmott , A. P. and Ellington , C. P. 1997 . The mechanics of flight in the hawkmoth Manduca sexta: II. Aerodynamic consequences of kinematics and morphological variation . J. Exp. Biol. , 200 : 2723 – 2745 .
  • Ellington , C. P. 1984 . The aerodynamics of hovering insect flight: I-VI . Phil. Trans. R. Soc. Lond. B , 305 : 1 – 181 .
  • Wang , J. Z. 2005 . Dissecting insect flight . Annu. Rev. Fluid Mech. , 37 : 183 – 210 .
  • Dickinson , M. H. , Lehmann , F.-O. and Sane , S. P. 1999 . Wing rotation and the aerodynamic basis of insect flight . Science , 284 : 1954 – 1960 .
  • Dudley , R. 2000 . The Biomechanics of Insect Flight: From, Function, Evolution , Princeton , NJ : Princeton University Press .
  • Nachtigall , W. 1974 . Insects in Flight: A Glimpse Behind the Scene in Biophysical Research , New York , NY : McGraw-Hill . H. Oldroyd and R. H. Abbott, Transl
  • Ross , H. H. 1956 . A Textbook of Entomology , New York , NY : Wiley .
  • Wootton , R. J. 1979 . Function, homology and terminology in insect wings . Systemat. Entomol. , 4 : 81 – 93 .
  • Wootton , R. J. 1981 . Support and deformability in insect wings . J. Zool. Lond. , 193 : 447 – 468 .
  • Wootton , R. J. 1990 . The mechanical design of insect wing . Sci. Am. , 263 : 114 – 120 .
  • Wootton , R. J. 1993 . Leading edge section and asymmetric twisting in the insect wings of flying butterflies . J. Exp. Biol. , 180 : 105 – 117 .
  • Ennos , R. A. 1989 . Inertial and aerodynamic torques on the wings of diptera in flight . J. Exp. Biol. , 142 : 87 – 95 .
  • Ennos , R. A. 1988 . Importance of torsion in the design of insect wings . J. Exp. Biol. , 140 : 137 – 160 .
  • Cobbes , S. A. and Daniel , T. L. 2003 . Flexural stiffness in insect wings: I—scaling and the influence of wing venation . J. Exp. Biol. , 206 : 2979 – 2987 .
  • Heathcote , S. , Wang , Z. and Gursul , I. 2008 . Effect of spanwise flexibility on flapping wing propulsion . J. Fluids Struct. , 24 : 183 – 199 .
  • Sane , S. P. 2003 . Review: the aerodynamics of insect flight . J. Exp. Biol. , 206 : 4191 – 4208 .
  • Birch , J. M. and Dickinson , M. H. 2001 . Spanwise flow and the attachment of the leading-edge vortex on insect wings . Nature , 412 : 729 – 733 .
  • Combes , S. A. and Daniel , T. L. 2003 . Into thin air: contributions of aerodynamic and inertial-elastic forces to wing bending in hawkmoth, Manduca sexta . J. Exp. Biol. , 206 : 2999 – 3006 .
  • Daniel , T. L. and Combes , S. A. 2002 . Flexible wings and fins: bending by inertial or fluid-dynamic forces? . Integr. Comp. Biol. , 42 : 1044 – 1049 .
  • Galinski , C. and Zbikowski , R. 2007 . Materials challenges in the design of an insect-like flapping wing mechanism based on a four-bar linkage . Mater. Des. , 28 : 783 – 796 .
  • Usherwood , J. R. and Ellington , C. P. 2002 . The aerodynamics of revolving wings: I. Model hawkmoth wings . J. Exp. Biol. , 205 : 1547 – 1564 .
  • Altshuler , D. L. , Dickson , W. B. , Vance , J. T. , Roberta , S. P. and Dickinson , M. H. 2005 . Short amplitude high frequency wing strokes determine the aerodynamics of honeybee flight . Proc. Natl. Acad. Sci. USA , 102 : 18213 – 18218 .
  • Sane , S. P. and Dickinson , M. H. 2001 . The control of flight force by a flapping wing: lift and drag production . J. Exp. Biol. , 204 : 2607 – 2626 .
  • Yamamoto , M. 2005 . Measurement of unsteady fluid dynamic forces for a mechanical dragonfly model . AIAA J. , 43 : 2475 – 2480 .
  • Combes , S. A. and Daniel , T. L. 2001 . Shape, flapping and flexion: wing and fin design for forward flight . J. Exp. Biol. , 204 : 2073 – 2085 .
  • Bergou , A. J. , Xu , S. and Wang , J. Z. 2007 . Passive wing pitch reversal in insect flight . J. Fluid Mech. , 591 : 321 – 337 .
  • Sunada , S. , Zeng , L. and Kawachi , K. 1998 . The relationship between dragonfly wing structure and torsional deformation . J. Theor. Biol. , 193 : 39 – 45 .
  • Lin , C.-S. , Hwu , C. and Young , W.-B. 2006 . The thrust and lift of an ornithopter's membrane wings with simple flapping motion . Aero Sci. Technol. , 10 : 111 – 119 .
  • Hamamoto , M. , Ohta , Y. , Hara , K. and Hisada , T. 2007 . Application of fluid-structure interaction analysis to flapping flight of insects with deformable wings . Adv. Robotics , 21 : 1 – 21 .
  • Isogai , K. and Harino , Y. 2007 . Optimum aeroelastic design of a mapping wing . J. Aircraft. , 44 : 2040 – 2048 .
  • Willmont , A. P. , Ellington , C. P. and Thomas , A. R. L. 1997 . Flow visualization and unsteady aerodynamics in the flight of the hawkmoth, Manduca sexta . Phil. Trans. R. Soc. B , 352 : 301 – 316 .
  • Sunda , S. , Song , D. , Meg , X. , Wang , H. , Zeng , L. and Kawachi , K. 2002 . Optical measurement of deformation, motion, and generated force of the wings of a moth, Mythimna separata (Walker) . JSME Int. J. Ser. B , 45 : 836 – 842 .
  • Zeng , L. , Matsumoto , H. and Kawachi , K. 1996 . A fringe shadow method for measuring flapping angle and torsional angle of a dragonfly wing . Meas. Sci. Technol. , 7 : 776 – 781 .
  • Ganapathy , S. 1984 . Decomposition of transformation matrices for robot vision . Pattern Recognit. Lett. , 2 : 401 – 412 .
  • Cobbes , S. A. and Daniel , T. L. 2003 . Flexural stiffness in insect wings: II. Spatial distribution and dynamic wing bending . J. Exp. Biol. , 206 : 2989 – 2997 .
  • Smith , C. W. , Herbert , R. , Wootton , R. J. and Evans , K. E. 2000 . The hind wing of the desert locust (Schistocerca gergaria forskal)—II: mechanical properties and functioning of membrane . J. Exp. Biol. , 203 : 2933 – 2943 .
  • Herbert , R. C. , Young , P. G. , Smith , C. W. , Wootton , R. J. and Evans , K. E. 2000 . The hind wing of desert locust: III. Finite element analysis of a deployable structure . J. Exp. Biol. , 203 : 2945 – 2955 .
  • Kesel , A. B. and Philippi andW , U. 1998 . Nachtigall, Biomechanical aspects of the insect wings: an analysis using the finite element method . Comp. Biol. Med. , 28 : 423 – 437 .
  • Wootton , R. J. , Herbert , R. C. , Young , P. G. and Evans , K. E. 2003 . Approaches to the structural modeling of insect wings . Phil. Trans. R. Soc. Lond. B , 358 : 1577 – 1587 .
  • Agrawal , A. 2008 . MSc Thesis , Department of Mechanical Engineering, University of Delaware .
  • Agrawal , A. and Ben-Jar , P.-Y. 2003 . Analysis of specimen thickness effect on interlaminar fracture toughness of fiber composites using finite element models . Comp. Sci. Technol. , 63 : 1393 – 1402 .
  • 2006 . ABAQUS Standard Manual , Pawtuchet , RI : HKS . Version 6.6
  • Agrawal , S. and Fabian , B. C. 1999 . Optimization of Dynamic Systems , Dordrecht : Kluwer .
  • 2007 . MATLAB Software, MathWorks Natick , MA
  • Stanford , B. , Albertani , R. and Ifju , P. 2007 . Static finite element validation of a flexible micro air vehicle . Exp. Mech. , 47 : 283 – 294 .
  • Khan , Z. A. and Agrawal , S. K. 2006 . “ Design of flapping mechanisms based on transverse bending phenomenon in insects ” . In Proc. IEEE Conf. on Robotics and Automation 2323 – 2328 . Orlando , FL
  • Wilkin , P. and Williams , M. H. 1993 . Comparison of the aerodynamic forces on a flying sphingid moth with those predicted by quasi steady theory . Physiol. Zool. , 66 : 1015 – 1044 .
  • Tanaka , H. , Matsumoto , K. and Shimoyama , I. 2008 . Deformation and aerodynamic performance of a flapping artificial butterfly wing in free flight . Comp. Biochem. Physiol. A , 150 : S53 – S54 .
  • Douglas , A. L. , Dudley , R. and Ellington , C. P. 2004 . Aerodynamic forces of revolving hummingbird wings and wing models . J. Zool. Lond. , 264 : 327 – 332 .
  • Chen , J.-S. , Chen , J.-Y. and Chou , Y.-F. 2008 . On the natural frequencies and mode shapes of dragonfly wings . J. Sound Vibrat. , 313 : 643 – 654 .

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.