0
Views
0
CrossRef citations to date
0
Altmetric
Original Paper

Neuroprotection by Preconditioning in Mice is Dependent on MyD88-Mediated CXCL10 Expression in Endothelial Cells

, , ORCID Icon, , , , , , & ORCID Icon show all
Article: 17590914221146365 | Received 13 Sep 2022, Accepted 28 Nov 2022, Published online: 16 Jul 2024

References

  • Akira S., Uematsu S., Takeuchi O. (2006). Pathogen recognition and innate immunity. Cell, 124(4), 783–801. https://doi.org/10.1016/j.cell.2006.02.015
  • Bajova H., Nelson T. E., Gruol D. L. (2008). Chronic CXCL10 alters the level of activated ERK1/2 and transcriptional factors CREB and NF-kappaB in hippocampal neuronal cell culture. Journal of Neuroimmunology, 195(1–2), 36–46. https://doi.org/10.1016/j.jneuroim.2008.01.003
  • Banks W. A., Robinson S. M. (2010). Minimal penetration of lipopolysaccharide across the murine blood–brain barrier. Brain Behavior and Immunity, 24(1), 102–109. https://doi.org/10.1016/j.bbi.2009.09.001
  • Cadet J. L., Krasnova I. N. (2009). Cellular and molecular neurobiology of brain preconditioning. Molecular Neurobiology, 39(1), 50–61. https://doi.org/10.1007/s12035-009-8051-6
  • Chen Z., Jalabi W., Hu W., Park H. J., Gale J. T., Kidd G. J., Bernatowicz R., Gossman Z. C., Chen J. T., Dutta R., Trapp B. D. (2014). Microglial displacement of inhibitory synapses provides neuroprotection in the adult brain. Nature Communications, 5, 4486. https://doi.org/10.1038/ncomms5486
  • Chen Z., Jalabi W., Shpargel K. B., Farabaugh K. T., Dutta R., Yin X., Kidd G. J., Bergmann C. C., Stohlman S. A., Trapp B. D. (2012). Lipopolysaccharide-induced microglial activation and neuroprotection against experimental brain injury is independent of hematogenous TLR4. Journal of Neuroscience, 32(34), 11706–11715. https://doi.org/10.1523/JNEUROSCI.0730-12.2012
  • Chen Z., Trapp B. D. (2016). Microglia and neuroprotection. Journal of Neurochemistry, 136(S1), 10–17. https://doi.org/10.1111/jnc.13062
  • Cho C. F., Wolfe J. M., Fadzen C. M., Calligaris D., Hornburg K., Chiocca E. A., Agar N. Y. R., Pentelute B. L., Lawler S. E. (2017). Blood–brain-barrier spheroids as an in vitro screening platform for brain-penetrating agents. Nature Communications, 8, 15623. https://doi.org/10.1038/ncomms15623
  • Cho J., Nelson T. E., Bajova H., Gruol D. L. (2009). Chronic CXCL10 alters neuronal properties in rat hippocampal culture. Journal of Neuroimmunology, 207(1–2), 92–100. https://doi.org/10.1016/j.jneuroim.2008.12.007
  • Clarner T., Janssen K., Nellessen L., Stangel M., Skripuletz T., Krauspe B., Hess F. M., Denecke B., Beutner C., Linnartz-Gerlach B., Neumann H., Vallieres L., Amor S., Ohl K., Tenbrock K., Beyer C., Kipp M. (2015). CXCL10 Triggers early microglial activation in the cuprizone model. Journal of Immunology, 194(7), 3400–3413. https://doi.org/10.4049/jimmunol.1401459
  • Cserep C., Pósfai B., Lénárt N., Fekete R., László Z.I., Lele Z., Orsolits B., Molnár G., Heindl S., Schwarcz A.D., Ujvári K., Környei Z., Tóth K., Szabadits E., Sperlágh B., Baranyi M., Csiba L., Hortobágyi T., Maglóczky Z., …, Dénes Á. (2020). Microglia monitor and protect neuronal function through specialized somatic purinergic junctions. Science (New York, N.Y.), 367(6477), 528–537. https://doi.org/10.1126/science.aax6752
  • Dawson D. A., Furuya K., Gotoh J., Nakao Y., Hallenbeck J. M. (1999). Cerebrovascular hemodynamics and ischemic tolerance: Lipopolysaccharide-induced resistance to focal cerebral ischemia is not due to changes in severity of the initial ischemic insult, but is associated with preservation of microvascular perfusion. Journal of Cerebral Blood Flow and Metabolism, 19(6), 616–623. https://doi.org/10.1097/00004647-199906000-00004
  • Deutsch E., Weigel A. V., Akin E. J., Fox P., Hansen G., Haberkorn C. J., Loftus R., Krapf D., Tamkun M. M. (2012). Kv2.1 cell surface clusters are insertion platforms for ion channel delivery to the plasma membrane. Molecular Biology of the Cell, 23(15), 2917–2929. https://doi.org/10.1091/mbc.e12-01-0047
  • Faden A. I., Stoica B. (2007). Neuroprotection: Challenges and opportunities. Archives of Neurology, 64(6), 794–800. https://doi.org/10.1001/archneur.64.6.794
  • Favuzzi E., Huang S., Saldi G. A., Binan L., Ibrahim L. A., Fernandez-Otero M., Cao Y., Zeine A., Sefah A., Zheng K., Xu Q., Khlestova E., Farhi S. L., Bonneau R., Datta S. R., Stevens B., Fishell G. (2021). GABA-receptive microglia selectively sculpt developing inhibitory circuits. Cell, 184(15), 4048–4063. e4032. https://doi.org/10.1016/j.cell.2021.06.018
  • Feinshreiber L., Singer-Lahat D., Ashery U., Lotan I. (2009). Voltage-gated potassium channel as a facilitator of exocytosis. Annals of the New York Academy of Sciences, 1152, 87–92. https://doi.org/10.1111/j.1749-6632.2008.03997.x
  • Fleming J. O.,, Trousdale M. D., el-Zaatari F. A., Stohlman S. A., Weiner L. P. (1986). Pathogenicity of antigenic variants of murine coronavirus JHM selected with monoclonal antibodies. Journal of Virology, 58(3), 869–875. https://doi.org/10.1128/jvi.58.3.869-875.1986
  • Fox P. D., Haberkorn C. J., Akin E. J., Seel P. J., Krapf D., Tamkun M. M. (2015). Induction of stable ER-plasma-membrane junctions by Kv2.1 potassium channels. Journal of Cell Science, 128(11), 2096–2105. https://doi.org/10.1242/jcs.166009
  • Hardingham G. E., Arnold F. J., Bading H. (2001). A calcium microdomain near NMDA receptors: On switch for ERK-dependent synapse-to-nucleus communication. Nature Neuroscience, 4(6), 565–566. https://doi.org/10.1038/88380
  • Haruwaka K., Ikegami A., Tachibana Y., Ohno N., Konishi H., Hashimoto A., Matsumoto M., Kato D., Ono R., Kiyama H., Moorhouse A. J., Nabekura J., Wake H. (2019). Dual microglia effects on blood–brain barrier permeability induced by systemic inflammation. Nature Communications, 10(1), 5816. https://doi.org/10.1038/s41467-019-13812-z
  • Huang H., Liu T., Rose J. L., Stevens R. L., Hoyt D. G. (2007). Sensitivity of mice to lipopolysaccharide is increased by a high saturated fat and cholesterol diet. Journal of Inflammation (London), 4, 22. https://doi.org/10.1186/1476-9255-4-22
  • Li D. Y., Sorensen L. K., Brooke B. S., Urness L. D., Davis E. C., Taylor D. G., Boak B. B., Wendel D. P. (1999). Defective angiogenesis in mice lacking endoglin. Science (New York, N.Y.), 284(5419), 1534–1537. https://doi.org/10.1126/science.284.5419.1534
  • Lou N., Takano T., Pei Y., Xavier A. L., Goldman S. A., Nedergaard M. (2016). Purinergic receptor P2RY12-dependent microglial closure of the injured blood-brain barrier. Proceedings of the National Academy of Sciences of the United States of America, 113(4), 1074–1079. https://doi.org/10.1073/pnas.1520398113
  • Mirrione M. M., Konomos D. K., Gravanis I., Dewey S. L., Aguzzi A., Heppner F. L., Tsirka S. E. (2010). Microglial ablation and lipopolysaccharide preconditioning affects pilocarpine-induced seizures in mice. Neurobiology of Disease, 39(1), 85–97. https://doi.org/10.1016/j.nbd.2010.04.001
  • Nagyoszi P., Wilhelm I., Farkas A. E., Fazakas C., Dung N. T., Hasko J., Krizbai I. A. (2010). Expression and regulation of toll-like receptors in cerebral endothelial cells. Neurochemistry International, 57(5), 556–564. https://doi.org/10.1016/j.neuint.2010.07.002
  • Paolicelli R. C., Bolasco G., Pagani F., Maggi L., Scianni M., Panzanelli P., Giustetto M., Ferreira T. A., Guiducci E., Dumas L., Ragozzino D., Gross C. T. (2011). Synaptic pruning by microglia is necessary for normal brain development. Science (New York, N.Y.), 333(6048), 1456–1458. https://doi.org/10.1126/science.1202529
  • Petrisko T. J., Bloemer J., Pinky P. D., Srinivas S., Heslin R. T., Du Y., Setti S. E., Hong H., Suppiramaniam V., Konat G. W., Reed M. N. (2020). Neuronal CXCL10/CXCR3 axis mediates the induction of cerebral hyperexcitability by peripheral viral challenge. Frontiers in Neuroscience, 14, 220. https://doi.org/10.3389/fnins.2020.00220
  • Phares T. W., DiSano K. D., Stohlman S. A., Bergmann C. C. (2014). Progression from IgD + IgM + to isotype-switched B cells is site specific during coronavirus-induced encephalomyelitis. Journal of Virology, 88(16), 8853–8867. https://doi.org/10.1128/JVI.00861-14
  • Puntambekar S. S., Saber M., Lamb B. T., Kokiko-Cochran O. N. (2018). Cellular players that shape evolving pathology and neurodegeneration following traumatic brain injury. Brain Behavior and Immunity, 71, 9–17. https://doi.org/10.1016/j.bbi.2018.03.033
  • Rappert A., Bechmann I., Pivneva T., Mahlo J., Biber K., Nolte C., Kovac A. D., Gerard C., Boddeke H. W., Nitsch R., Kettenmann H. (2004). CXCR3-dependent microglial recruitment is essential for dendrite loss after brain lesion. Journal of Neuroscience, 24(39), 8500–8509. https://doi.org/10.1523/JNEUROSCI.2451-04.2004
  • Raslan F., Albert-Weissenberger C., Ernestus R. I., Kleinschnitz C., Siren A. L. (2012). Focal brain trauma in the cryogenic lesion model in mice. Experimental & Translational Stroke Medicine, 4, 6. https://doi.org/10.1186/2040-7378-4-6
  • Ridder D. A., Lang M. F., Salinin S., Roderer J. P., Struss M., Maser-Gluth C., Schwaninger M. (2011). TAK1 In brain endothelial cells mediates fever and lethargy. Journal of Experimental Medicine, 208(13), 2615–2623. https://doi.org/10.1084/jem.20110398
  • Sangaran P. G., Ibrahim Z. A., Chik Z., Mohamed Z., Ahmadiani A. (2021). LPS preconditioning attenuates apoptosis mechanism by inhibiting NF-kappaB and caspase-3 activity: TLR4 pre-activation in the signaling pathway of LPS-induced neuroprotection. Molecular Neurobiology, 58(5), 2407–2422. https://doi.org/10.1007/s12035-020-02227-3
  • Saunders N. R., Dziegielewska K. M., Mollgard K., Habgood M. D. (2015). Markers for blood-brain barrier integrity: How appropriate is Evans blue in the twenty-first century and what are the alternatives? Frontiers in Neuroscience, 9, 385. https://doi.org/10.3389/fnins.2015.00385
  • Schafer D. P., Lehrman E. K., Kautzman A. G., Koyama R., Mardinly A. R., Yamasaki R., Ransohoff R. M., Greenberg M. E., Barres B. A., Stevens B. (2012). Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron, 74(4), 691–705. https://doi.org/10.1016/j.neuron.2012.03.026
  • Shpargel K. B., Jalabi W., Jin Y., Dadabayev A., Penn M. S., Trapp B. D. (2008). Preconditioning paradigms and pathways in the brain. Cleveland Clinical Journal of Medicine, 75(Suppl 2), S77–S82. https://doi.org/10.3949/ccjm.75.suppl_2.s77
  • Stevens S. L., Leung P. Y., Vartanian K. B., Gopalan B., Yang T., Simon R. P., Stenzel-Poore M. P. (2011). Multiple preconditioning paradigms converge on interferon regulatory factor-dependent signaling to promote tolerance to ischemic brain injury. Journal of Neuroscience, 31, 8456–8463.
  • Szklarczyk D., Franceschini A., Kuhn M., Simonovic M., Roth A., Minguez P., Doerks T., Stark M., Muller J., Bork P., Jensen L. J., von Mering C. (2011). The STRING database in 2011: Functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Research, 39(Database issue), D561–D568. https://doi.org/10.1093/nar/gkq973
  • Tang Z., Guo D., Xiong L., Wu B., Xu X., Fu J., Kong L., Liu Z., Xie C. (2018). TLR4/PKCalpha/occludin Signaling pathway may be related to blood–brain barrier damage. Molecular Medicine Reports, 18(1), 1051–1057. https://doi.org/10.3892/mmr.2018.9025
  • Tanuma N., Sakuma H., Sasaki A., Matsumoto Y. (2006). Chemokine expression by astrocytes plays a role in microglia/macrophage activation and subsequent neurodegeneration in secondary progressive multiple sclerosis. Acta Neuropathologica, 112(2), 195–204. https://doi.org/10.1007/s00401-006-0083-7
  • Vanlandewijck M., He L., Mae M. A., Andrae J., Ando K., Del Gaudio F., Nahar K., Lebouvier T., Lavina B., Gouveia L., Sun Y., Raschperger E., Rasanen M., Zarb Y., Mochizuki N., Keller A., Lendahl U., Betsholtz C. (2018). A molecular atlas of cell types and zonation in the brain vasculature. Nature, 554(7693), 475–480. https://doi.org/10.1038/nature25739
  • Vaure C., Liu Y. (2014). A comparative review of toll-like receptor 4 expression and functionality in different animal species. Frontiers in Immunology, 5, 316. https://doi.org/10.3389/fimmu.2014.00316
  • Walton J. (1979). Lead asparate, an en bloc contrast stain particularly useful for ultrastructural enzymology. Journal of Histochemistry and Cytochemistry, 27(10), 1337–1342. https://doi.org/10.1177/27.10.512319
  • Wolman M., Klatzo I., Chui E., Wilmes F., Nishimoto K., Fujiwara K., Spatz M. (1981). Evaluation of the dye-protein tracers in pathophysiology of the blood–brain barrier. Acta Neuropathologica, 54(1), 55–61. https://doi.org/10.1007/BF00691332
  • Yu M., Zhou H., Zhao J., Xiao N., Roychowdhury S., Schmitt D., Hu B., Ransohoff R. M., Harding C. V., Hise A. G., Hazen S. L., DeFranco A. L., Fox P. L., Morton R. E., Dicorleto P. E., Febbraio M., Nagy L. E., Smith J. D., Wang J. A., Li X. (2014). MyD88-dependent interplay between myeloid and endothelial cells in the initiation and progression of obesity-associated inflammatory diseases. Journal of Experimental Medicine, 211(5), 887–907. https://doi.org/10.1084/jem.20131314