0
Views
3
CrossRef citations to date
0
Altmetric
Original Papers

Casein Kinase 2 Mediates HIV- and Opioid-Induced Pathologic Phosphorylation of TAR DNA Binding Protein 43 in the Basal Ganglia

, , , , , , ORCID Icon & ORCID Icon show all
Article: 17590914231158218 | Received 21 Nov 2022, Accepted 01 Feb 2023, Published online: 16 Jul 2024

References

  • Alquezar C., Salado I. G., de la Encarnación A., Pérez D. I., Moreno F., Gil C., de Munain A. L., Martínez A., Martín-Requero Á (2016). Targeting TDP-43 phosphorylation by Casein Kinase-1δ inhibitors: A novel strategy for the treatment of frontotemporal dementia. Molecular Neurodegeneration, 11(1), 36. https://doi.org/10.1186/s13024-016-0102-7
  • Arai T., Hasegawa M., Nonoka T., Kametani F., Yamashita M., Hosokawa M., Niizato K., Tsuchiya K., Kobayashi Z., Ikeda K., Yoshida M., Onaya M., Fujishiro H., Akiyama H. (2010). Phosphorylated and cleaved TDP-43 in ALS, FTLD and other neurodegenerative disorders and in cellular models of TDP-43 proteinopathy. Neuropathology: Official Journal of the Japanese Society of Neuropathology, 30(2), 170–181. https://doi.org/10.1111/j.1440-1789.2009.01089.x
  • Arai T., Mackenzie I. R. A., Hasegawa M., Nonoka T., Niizato K., Tsuchiya K., Iritani S., Onaya M., Akiyama H. (2009). Phosphorylated TDP-43 in Alzheimer’s disease and dementia with Lewy bodies. Acta Neuropathologica, 117(2), 125–136. https://doi.org/10.1007/s00401-008-0480-1
  • Barmada S. J., Skibinski G., Korb E., Rao E. J., Wu J. Y., Finkbeiner S. (2010). Cytoplasmic mislocalization of TDP-43 is toxic to neurons and enhanced by a mutation associated with familial amyotrophic lateral sclerosis. Journal of Neuroscience, 30(2), 639–649. https://doi.org/10.1523/JNEUROSCI.4988-09.2010
  • Berger J. R., Arendt G. (2000). HIV Dementia: The role of the basal ganglia and dopaminergic systems. J Psychopharmacol (Oxford), 14(3), 214–221. https://doi.org/10.1177/026988110001400304
  • Bhargavan B., Woollard S. M., McMillan J. E., Kanmogne G. D. (2021). CCR5 Antagonist reduces HIV-induced amyloidogenesis, tau pathology, neurodegeneration, and blood-brain barrier alterations in HIV-infected hu-PBL-NSG mice. Molecular Neurodegeneration, 16(1), 78. https://doi.org/10.1186/s13024-021-00500-0
  • Brady O. A., Meng P., Zheng Y., Mao Y., Hu F. (2011). Regulation of TDP-43 aggregation by phosphorylation and p62/SQSTM1. Journal of Neurochemistry, 116(2), 248–259. https://doi.org/10.1111/j.1471-4159.2010.07098.x
  • Brown L. A. M., Scarola J., Smith A. J., Sanberg P. R., Tan J., Giunta B. (2014). The role of tau protein in HIV-associated neurocognitive disorders. Molecular Neurodegeneration, 9(1), 40. https://doi.org/10.1186/1750-1326-9-40
  • Bruce-Keller A. J., Turchan-Cholewo J., Smart E. J., Geurin T., Chauhan A., Reid R., Xu R., Nath A., Knapp P. E., Hauser K. F. (2008). Morphine causes rapid increases in glial activation and neuronal injury in the striatum of inducible HIV-1 Tat transgenic mice. Glia, 56(13), 1414–1427. https://doi.org/10.1002/glia.20708
  • Carlomagno Y., Zhang Y., Davis M., Lin W.-L., Cook C., Dunmore J., Tay W., Menkosky K., Cao X., Petrucelli L., Deture M. (2014). Casein kinase II induced polymerization of soluble TDP-43 into filaments is inhibited by heat shock proteins. PLoS One, 9(3), e90452. https://doi.org/10.1371/journal.pone.0090452
  • Chakrabarti S., Liu N.-J., Gintzler A. R. (2020). Phosphorylation of unique C-terminal sites of the mu-opioid receptor variants 1B2 and 1C1 influences their Gs association following chronic morphine. Journal of Neurochemistry, 152(4), 449–467. https://doi.org/10.1111/jnc.14863
  • Chaudhry A., Rubin R. P. (1990). Mediators of Ca2+-dependent secretion. Environmental Health Perspectives, 84, 35–39. https://doi.org/10.1289/ehp.908435
  • Davison S. E., Aylward E. H., McArthur J. C., Selnes O. A., Lyketsos C., Barta P. E., Pearlson G. D. (1997). A quantitative MRI study of the basal ganglia in depression in HIV seropositive men. Journal of Neuro-Aids, 1(3), 29–41. https://doi.org/10.1300/J128v01n03_02
  • Douville R. N., Nath A. (2017). Human endogenous retrovirus-K and TDP-43 expression bridges ALS and HIV neuropathology. Frontiers in Microbiology, 8, 1986. https://doi.org/10.3389/fmicb.2017.01986
  • Eck R. J., Kraemer B. C., Liachko N. F. (2021). Regulation of TDP-43 phosphorylation in aging and disease. Geroscience, 43(4), 1605–1614. https://doi.org/10.1007/s11357-021-00383-5
  • El-Hage N., Gurwell J. A., Singh I. N., Knapp P. E., Nath A., Hauser K. F. (2005). Synergistic increases in intracellular Ca2+, and the release of MCP-1, RANTES, and IL-6 by astrocytes treated with opiates and HIV-1 Tat. Glia, 50(2), 91–106. https://doi.org/10.1002/glia.20148
  • Fitting S., Knapp P. E., Zou S., Marks W. D., Bowers M. S., Akbarali H. I., Hauser K. F. (2014). Interactive HIV-1 Tat and morphine-induced synaptodendritic injury is triggered through focal disruptions in Na+ influx, mitochondrial instability, and Ca2+ overload. Journal of Neuroscience, 34(38), 12850–12864. https://doi.org/10.1523/JNEUROSCI.5351-13.2014
  • Fitting S., McRae M., Hauser K. F. (2020). Opioid and neuroHIV comorbidity - current and future perspectives. Journal of Neuroimmune Pharmacology: The Official Journal of the Society on NeuroImmune Pharmacology, 15(4), 584–627. https://doi.org/10.1007/s11481-020-09941-8
  • Fitting S., Xu R., Bull C., Buch S. K., El-Hage N., Nath A., Knapp P. E., Hauser K. F. (2010). Interactive comorbidity between opioid drug abuse and HIV-1 Tat: Chronic exposure augments spine loss and sublethal dendritic pathology in striatal neurons. American Journal of Pathology, 177(3), 1397–1410. https://doi.org/10.2353/ajpath.2010.090945
  • Goossens J., Vanmechelen E., Trojanowski J. Q., Lee V. M. Y., Van Broeckhoven C., van der Zee J., Engelborghs S. (2015). TDP-43 as a possible biomarker for frontotemporal lobar degeneration: A systematic review of existing antibodies. Acta Neuropathologica Communications, 3(1), 15. https://doi.org/10.1186/s40478-015-0195-1
  • Guerrero E. N., Mitra J., Wang H., Rangaswamy S., Hegde P. M., Basu P., Rao K. S., Hegde M. L. ( 2019a). Amyotrophic lateral sclerosis-associated TDP-43 mutation Q331K prevents nuclear translocation of XRCC4-DNA ligase 4 complex and is linked to genome damage-mediated neuronal apoptosis. Human Molecular Genetics, 28(15), 2459–2476. https://doi.org/10.1093/hmg/ddz062
  • Guerrero E. N., Mitra J., Wang H., Rangaswamy S., Hegde P. M., Basu P., Rao K. S., Hegde M. L. ( 2019b). Amyotrophic lateral sclerosis-associated TDP-43 mutation Q331K prevents nuclear translocation of XRCC4-DNA ligase 4 complex and is linked to genome damage-mediated neuronal apoptosis. Human Molecular Genetics, 28(18), 3161–3162. https://doi.org/10.1093/hmg/ddz141
  • Hasegawa M., Arai T., Nonaka T., Kametani F., Yoshida M., Hashizume Y., Beach T. G., Buratti E., Baralle F., Morita M., Nakano I., Oda T., Tsuchiya K., Akiyama H. (2008). Phosphorylated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Annals of Neurology, 64(1), 60–70. https://doi.org/10.1002/ana.21425
  • Hauser K. F., El-Hage N., Buch S., Nath A., Tyor W. R., Bruce-Keller A. J., Knapp P. E. (2006). Impact of opiate-HIV-1 interactions on neurotoxic signaling. Journal of Neuroimmune Pharmacology: The Official Journal of the Society on NeuroImmune Pharmacology, 1(1), 98–105. https://doi.org/10.1007/s11481-005-9000-4
  • Hauser K. F., Hahn Y. K., Adjan V. V., Zou S., Buch S. K., Nath A., Bruce-Keller A. J., Knapp P. E. (2009). HIV-1 Tat and morphine have interactive effects on oligodendrocyte survival and morphology. Glia, 57(2), 194–206. https://doi.org/10.1002/glia.20746
  • Hauser K. F., Stiene-Martin A., Mattson M. P., Elde R. P., Ryan S. E., Godleske C. C. (1996). μ-Opioid receptor-induced Ca2+ mobilization and astroglial development: Morphine inhibits DNA synthesis and stimulates cellular hypertrophy through a Ca2+-dependent mechanism. Brain Research, 720(1-2), 191–203. https://doi.org/10.1016/0006-8993(96)00103-5
  • Henderson L. J., Johnson T. P., Smith B. R., Reoma L. B., Santamaria U. A., Bachani M., Demarino C., Barclay R. A., Snow J., Sacktor N., Mcarthur J., Letendre S., Steiner J., Kashanchi F., Nath A. (2019). Presence of Tat and transactivation response element in spinal fluid despite antiretroviral therapy. AIDS (London, England), 33(Suppl 2), S145–S157. https://doi.org/10.1097/QAD.0000000000002268
  • Huang W., Zhou Y., Tu L., Ba Z., Huang J., Huang N., Luo Y. (2020). TDP-43: From Alzheimer’s disease to limbic-predominant age-related TDP-43 encephalopathy. Frontiers in Molecular Neuroscience, 13, 26. https://doi.org/10.3389/fnmol.2020.00026
  • Jang S. W., Hwang S. S., Kim H. S., Lee K. O., Kim M. K., Lee W., Kim K., Lee G. R. (2017). Casein kinase 2 is a critical determinant of the balance of Th17 and Treg cell differentiation. Experimental and Molecular Medicine, 49(9), e375. https://doi.org/10.1038/emm.2017.132
  • Jiang L.-L., Xue W., Hong J.-Y., Zhang J.-T., Li M.-J., Yu S.-N., He J.-H., Hu H.-Y. (2017). The N-terminal dimerization is required for TDP-43 splicing activity. Scientific Reports, 7(1), 6196. https://doi.org/10.1038/s41598-017-06263-3
  • Jiang L.-L., Zhao J., Yin X.-F., He W.-T., Yang H., Che M.-X., Hu H.-Y. (2016). Two mutations G335D and Q343R within the amyloidogenic core region of TDP-43 influence its aggregation and inclusion formation. Scientific Reports, 6(1), 23928. https://doi.org/10.1038/srep23928
  • Jo M., Lee S., Jeon Y.-M., Kim S., Kwon Y., Kim H.-J. (2020). The role of TDP-43 propagation in neurodegenerative diseases: Integrating insights from clinical and experimental studies. Experimental and Molecular Medicine, 52(10), 1652–1662. https://doi.org/10.1038/s12276-020-00513-7
  • Johnson T. P., Patel K., Johnson K. R., Maric D., Calabresi P. A., Hasbun R., Nath A. (2013). Induction of IL-17 and nonclassical T-cell activation by HIV-Tat protein. Proceedings of the National Academy of Sciences of the USA, 110(33), 13588–13593. https://doi.org/10.1073/pnas.1308673110
  • Josephs K. A., Whitwell J. L., Weigand S. D., Murray M. E., Tosakulwong N., Liesinger A. M., Petrucelli L., Senjem M. L., Knopman D. S., Boeve B. F., Ivnik R. J., Smith G. E., Jack C. R., Parisi J. E., Petersen R. C., Dickson D. W. (2014). TDP-43 is a key player in the clinical features associated with Alzheimer’s disease. Acta Neuropathologica, 127(6), 811–824. https://doi.org/10.1007/s00401-014-1269-z
  • Jucker M., Walker L. C. (2018). Propagation and spread of pathogenic protein assemblies in neurodegenerative diseases. Nature Neuroscience, 21(10), 1341–1349. https://doi.org/10.1038/s41593-018-0238-6
  • Jung E. B., Kim Y. J., Lee C. S. (2014). Casein kinase 2 inhibition attenuates cholesterol oxidation product-induced apoptosis by suppressing the activation of the mitochondrial pathway and the caspase-8- and bid-dependent pathways. Neurochemistry International, 65, 30–39. https://doi.org/10.1016/j.neuint.2013.12.010
  • Kadri F., Pacifici M., Wilk A., Parker-Struckhoff A., Del Valle L., Hauser K. F., Knapp P. E., Parsons C., Jeansonne D., Lassak A., Peruzzi F. (2015). HIV-1-Tat protein inhibits SC35-mediated Tau Exon 10 inclusion through up-regulation of DYRK1A kinase. Journal of Biological Chemistry, 290(52), 30931–30946. https://doi.org/10.1074/jbc.M115.675751
  • Latimer C. S., Liachko N. F. (2021). Tau and TDP-43 synergy: A novel therapeutic target for sporadic late-onset Alzheimer’s disease. Geroscience, 43(3), 1627–1634. https://doi.org/10.1007/s11357-021-00407-0
  • Latimer C. S., Stair J. G., Hincks J. C., Currey H. N., Bird T. D., Keene C. D., Kraemer B. C., Liachko N. F. (2022). TDP-43 promotes tau accumulation and selective neurotoxicity in bigenic Caenorhabditis elegans. Disease Models & Mechanisms, 15(4), dmm049323. https://doi.org/10.1242/dmm.049323
  • Lee H. R., Shin H. K., Park S. Y., Kim H. Y., Lee W. S., Rhim B. Y., Hong K. W., Kim C. D. (2014). Attenuation of β-amyloid-induced tauopathy via activation of CK2α/SIRT1: Targeting for cilostazol. Journal of Neuroscience Research, 92(2), 206–217. https://doi.org/10.1002/jnr.23310
  • Montalbano M., McAllen S., Cascio F. L., Sengupta U., Garcia S., Bhatt N., Ellsworth A., Heidelman E. A., Johnson O. D., Doskocil S., Kayed R. (2020). TDP-43 and Tau oligomers in Alzheimer’s disease, amyotrophic lateral sclerosis, and frontotemporal dementia. Neurobiology of Disease, 146, 105130. https://doi.org/10.1016/j.nbd.2020.105130
  • Morrison W. J., Shukla S. D. (1988). Desensitization of receptor-coupled activation of phosphoinositide-specific phospholipase C in platelets: Evidence for distinct mechanisms for platelet-activating factor and thrombin. Molecular Pharmacology, 33(1), 58–63.
  • Murphy A., Barbaro J., Martínez-Aguado P., Chilunda V., Jaureguiberry-Bravo M., Berman J. W. (2019). The effects of opioids on HIV neuropathogenesis. Frontiers in Immunology, 10, 2445. https://doi.org/10.3389/fimmu.2019.02445
  • Nass S. R., Lark A. R. S., Hahn Y. K., McLane V. D., Ihrig T. M., Contois L., Napier T. C., Knapp P. E., Hauser K. F. (2021). HIV-1 Tat and morphine decrease murine inter-male social interactions and associated oxytocin levels in the prefrontal cortex, amygdala, and hypothalamic paraventricular nucleus. Hormones and Behavior, 133, 105008. https://doi.org/10.1016/j.yhbeh.2021.105008
  • Nass S. R., Ohene-Nyako M., Hahn Y. K., Knapp P. E., Hauser K. F. (2022). Neurodegeneration within the amygdala is differentially induced by opioid and HIV-1 Tat exposure. Frontiers in Neuroscience, 16, 804774. https://doi.org/10.3389/fnins.2022.804774
  • Nelson P. T., et al. (2019). Limbic-predominant age-related TDP-43 encephalopathy (LATE): Consensus working group report. Brain, 142(6), 1503–1527. https://doi.org/10.1093/brain/awz099
  • Neumann M., Kwong L. K., Truax A. C., Vanmassenhove B., Kretzschmar H. A., Van Deerlin V. M., Clark C. M., Grossman M., Miller B. L., Trojanowski J. Q., Lee V. M.-Y. (2007). TDP-43-positive white matter pathology in frontotemporal lobar degeneration with ubiquitin-positive inclusions. Journal of Neuropathology & Experimental Neurology, 66(3), 177–183. https://doi.org/10.1097/01.jnen.0000248554.45456.58
  • Newsome S. D., Johnson E., Pardo C., McArthur J. C., Nath A. (2011). Fulminant encephalopathy with basal ganglia hyperintensities in HIV-infected drug users. Neurology, 76(9), 787–794. https://doi.org/10.1212/WNL.0b013e31820e7b4e
  • Nonaka T., Suzuki G., Tanaka Y., Kametani F., Hirai S., Okado H., Miyashita T., Saitoe M., Akiyama H., Masai H., Hasegawa M. (2016). Phosphorylation of TAR DNA-binding protein of 43 kDa (TDP-43) by truncated casein kinase 1δ triggers mislocalization and accumulation of TDP-43. Journal of Biological Chemistry, 291(11), 5473–5483. https://doi.org/10.1074/jbc.M115.695379
  • Ohene-Nyako M., Nass S. R., Hahn Y. K., Knapp P. E., Hauser K. F. (2021). Morphine and HIV-1 Tat interact to cause region-specific hyperphosphorylation of tau in transgenic mice. Neuroscience Letters, 741, 135502. https://doi.org/10.1016/j.neulet.2020.135502
  • Oinuma I., Ito Y., Katoh H., Negishi M. (2010). Semaphorin 4D/Plexin-B1 stimulates PTEN activity through R-Ras GTPase-activating protein activity, inducing growth cone collapse in hippocampal neurons. Journal of Biological Chemistry, 285(36), 28200–28209. https://doi.org/10.1074/jbc.M110.147546
  • Ou S. H., Wu F., Harrich D., García-Martínez L. F., Gaynor R. B. (1995). Cloning and characterization of a novel cellular protein, TDP-43, that binds to human immunodeficiency virus type 1 TAR DNA sequence motifs. Journal of Virology, 69(6), 3584–3596. https://doi.org/10.1128/jvi.69.6.3584-3596.1995
  • Peng C., Trojanowski J. Q., Lee V. M.-Y. (2020). Protein transmission in neurodegenerative disease. Nature Reviews. Neurology, 16(4), 199–212. https://doi.org/10.1038/s41582-020-0333-7
  • Pinna L. A. (2002). Protein kinase CK2: A challenge to canons. Journal of Cell Science, 115(Pt 20), 3873–3878. https://doi.org/10.1242/jcs.00074
  • Rayaprolu S., Fujioka S., Traynor S., Soto-Ortolaza A. I., Petrucelli L., Dickson D. W., Rademakers R., Boylan K. B., Graff-Radford N. R., Uitti R. J., Wszolek Z. K., Ross O. A. (2013). TARDBP Mutations in Parkinson’s disease. Parkinsonism & Related Disorders, 19(3), 312–315. https://doi.org/10.1016/j.parkreldis.2012.11.003
  • Ren Y., Li S., Chen S., Sun X., Yang F., Wang H., Li M., Cui F., Huang X. (2021). TDP-43 and phosphorylated TDP-43 levels in paired plasma and CSF samples in amyotrophic lateral sclerosis. Frontiers in Neurology, 12, 663637. https://doi.org/10.3389/fneur.2021.663637
  • Sanna P. P., Fu Y., Masliah E., Lefebvre C., Repunte-Canonigo V. (2021). Central nervous system (CNS) transcriptomic correlates of human immunodeficiency virus (HIV) brain RNA load in HIV-infected individuals. Scientific Reports, 11(1), 12176. https://doi.org/10.1038/s41598-021-88052-7
  • Solyakov L., Cain K., Tracey B. M., Jukes R., Riley A. M., Potter B. V. L., Tobin A. B. (2004). Regulation of casein kinase-2 (CK2) activity by inositol phosphates. Journal of Biological Chemistry, 279(42), 43403–43410. https://doi.org/10.1074/jbc.M403239200
  • Steinacker P., Barschke P., Otto M. (2019). Biomarkers for diseases with TDP-43 pathology. Molecular and Cellular Neuroscience, 97, 43–59. https://doi.org/10.1016/j.mcn.2018.10.003
  • Tomé S. O., Vandenberghe R., Ospitalieri S., Van Schoor E., Tousseyn T., Otto M., von Arnim C. A. F., Thal D. R. (2020). Distinct molecular patterns of TDP-43 pathology in Alzheimer’s disease: Relationship with clinical phenotypes. Acta Neuropathologica Communications, 8(1), 61. https://doi.org/10.1186/s40478-020-00934-5
  • Tremblay C., St-Amour I., Schneider J., Bennett D. A., Calon F. (2011). Accumulation of transactive response DNA binding protein 43 in mild cognitive impairment and Alzheimer disease. Journal of Neuropathology & Experimental Neurology, 70(9), 788–798. https://doi.org/10.1097/NEN.0b013e31822c62cf
  • Tsoi P. S., Choi K.-J., Leonard P. G., Sizovs A., Moosa M. M., MacKenzie K. R., Ferreon J. C., Ferreon A. C. M. (2017). The N-terminal domain of ALS-linked TDP-43 assembles without misfolding. Angewandte Chemie International Edition, 56(41), 12590–12593. https://doi.org/10.1002/anie.201706769
  • Uhlen M., Bandrowski A., Carr S., Edwards A., Ellenberg J., Lundberg E., Rimm D. L., Rodriguez H., Hiltke T., Snyder M., Yamamoto T. (2016). A proposal for validation of antibodies. Nature Methods, 13(10), 823–827. https://doi.org/10.1038/nmeth.3995
  • von Giesen H. J., Wittsack H. J., Wenserski F., Köller H., Hefter H., Arendt G. (2001). Basal ganglia metabolite abnormalities in minor motor disorders associated with human immunodeficiency virus type 1. Archives of Neurology, 58(8), 1281–1286. https://doi.org/10.1001/archneur.58.8.1281
  • Wager T. T., et al. (2014). Casein kinase 1δ/ε inhibitor PF-5006739 attenuates opioid drug-seeking behavior. ACS Chemical Neuroscience, 5(12), 1253–1265. https://doi.org/10.1021/cn500201x
  • Wang W., Arakawa H., Wang L., Okolo O., Siedlak S. L., Jiang Y., Gao J., Xie F., Petersen R. B., Wang X. (2017). Motor-Coordinative and cognitive dysfunction caused by mutant TDP-43 could be reversed by inhibiting its mitochondrial localization. Molecular Therapy, 25(1), 127–139. https://doi.org/10.1016/j.ymthe.2016.10.013
  • Wang W., Wang L., Lu J., Siedlak S. L., Fujioka H., Liang J., Jiang S., Ma X., Jiang Z., da Rocha E. L., Sheng M., Choi H., Lerou P. H., Li H., Wang X. (2016). The inhibition of TDP-43 mitochondrial localization blocks its neuronal toxicity. Nature Medicine, 22(8), 869–878. https://doi.org/10.1038/nm.4130
  • Wen B. G., Pletcher M. T., Warashina M., Choe S. H., Ziaee N., Wiltshire T., Sauer K., Cooke M. P. (2004). Inositol (1,4,5) trisphosphate 3 kinase B controls positive selection of T cells and modulates Erk activity. Proceedings of the National Academy of Sciences of the USA, 101(15), 5604–5609. https://doi.org/10.1073/pnas.0306907101
  • Wu C.-C., Jin L.-W., Wang I.-F., Wei W.-Y., Ho P.-C., Liu Y.-C., Tsai K.-J. (2020). HDAC1 Dysregulation induces aberrant cell cycle and DNA damage in progress of TDP-43 proteinopathies. EMBO Molecular Medicine, 12(6), e10622. https://doi.org/10.15252/emmm.201910622
  • Zou S., Fitting S., Hahn Y.-K., Welch S. P., El-Hage N., Hauser K. F., Knapp P. E. (2011). Morphine potentiates neurodegenerative effects of HIV-1 Tat through actions at μ-opioid receptor-expressing glia. Brain, 134(Pt 12), 3616–3631. https://doi.org/10.1093/brain/awr281