1
Views
3
CrossRef citations to date
0
Altmetric
Review - The Role of Glial Cells in the Nervous System in Health and Disease

The Initial Myelination in the Central Nervous System

ORCID Icon, , &
Article: 17590914231163039 | Received 22 Dec 2022, Accepted 16 Feb 2023, Published online: 16 Jul 2024

References

  • Almazan G., Honegger P., Matthieu J. M. (1985). Triiodothyronine stimulation of oligodendroglial differentiation and myelination. A developmental study. Dev Neurosci, 7(1), 45–54. https://doi.org/10.1159/000112275
  • Almeida R. G., Czopka T., Ffrench-Constant C., Lyons D. A. (2011). Individual axons regulate the myelinating potential of single oligodendrocytes in vivo. Development, 138(20), 4443–4450. https://doi.org/10.1242/dev.071001
  • Back S. A., Luo N. L., Borenstein N. S., Levine J. M., Volpe J. J., Kinney H. C. (2001). Late oligodendrocyte progenitors coincide with the developmental window of vulnerability for human perinatal white matter injury. J Neurosci, 21(4), 1302–1312. https://doi.org/10.1523/jneurosci.21-04-01302.2001
  • Baer A. S., Syed Y. A., Kang S. U., Mitteregger D., Vig R., Ffrench-Constant C., Franklin R. J., Altmann F., Lubec G., Kotter M. R. (2009). Myelin-mediated inhibition of oligodendrocyte precursor differentiation can be overcome by pharmacological modulation of Fyn-RhoA and protein kinase C signalling. Brain, 132(Pt 2), 465–481. https://doi.org/10.1093/brain/awn334
  • Baerwald K. D., Popko B. (1998). Developing and mature oligodendrocytes respond differently to the immune cytokine interferon-gamma. J Neurosci Res, 52(2), 230–239. https://doi.org/10.1002/(sici)1097-4547(19980415)52:2<230::Aid-jnr11>3.0.Co;2-b
  • Bakiri Y., Burzomato V., Frugier G., Hamilton N. B., Káradóttir R., Attwell D. (2009). Glutamatergic signaling in the brain’s white matter. Neuroscience, 158(1), 266–274. https://doi.org/10.1016/j.neuroscience.2008.01.015
  • Bansal R., Pfeiffer S. E. (1994). Inhibition of protein and lipid sulfation in oligodendrocytes blocks biological responses to FGF-2 and retards cytoarchitectural maturation, but not developmental lineage progression. Dev Biol, 162(2), 511–524. https://doi.org/10.1006/dbio.1994.1105
  • Barateiro A., Brites D., Fernandes A. (2016). Oligodendrocyte development and myelination in neurodevelopment: Molecular mechanisms in health and disease. Curr Pharm Des, 22(6), 656–679. https://doi.org/10.2174/1381612822666151204000636
  • Barateiro A., Fernandes A. (2014). Temporal oligodendrocyte lineage progression: In vitro models of proliferation, differentiation and myelination. Biochim Biophys Acta, 1843(9), 1917–1929. https://doi.org/10.1016/j.bbamcr.2014.04.018
  • Baumann N., Pham-Dinh D. (2001). Biology of oligodendrocyte and myelin in the mammalian central nervous system. Physiol Rev, 81(2), 871–927. https://doi.org/10.1152/physrev.2001.81.2.871
  • Bechler M. E., Byrne L., Ffrench-Constant C. (2015). CNS Myelin sheath lengths are an intrinsic property of oligodendrocytes. Curr Biol, 25(18), 2411–2416. https://doi.org/10.1016/j.cub.2015.07.056
  • Bercury K. K., Dai J., Sachs H. H., Ahrendsen J. T., Wood T. L., Macklin W. B. (2014). Conditional ablation of raptor or rictor has differential impact on oligodendrocyte differentiation and CNS myelination. J Neurosci, 34(13), 4466–4480. https://doi.org/10.1523/jneurosci.4314-13.2014
  • Blakemore W. F. (1974). Pattern of remyelination in the CNS. Nature, 249(457), 577–578. https://doi.org/10.1038/249577a0
  • Brösamle C., Halpern M. E. (2002). Characterization of myelination in the developing zebrafish. Glia, 39(1), 47–57. https://doi.org/10.1002/glia.10088
  • Brown T. L., Macklin W. B. (2019). The actin cytoskeleton in myelinating cells. Neurochem Res, 45(3), 684–693. https://doi.org/10.1007/s11064-019-02753-0
  • Bunge M. B., Bunge R. P., Ris H. (1961). Ultrastructural study of remyelination in an experimental lesion in adult cat spinal cord. J Biophys Biochem Cytol, 10(1), 67–94. https://doi.org/10.1083/jcb.10.1.67
  • Butt A. M. (2006). Neurotransmitter-mediated calcium signalling in oligodendrocyte physiology and pathology. Glia, 54(7), 666–675. https://doi.org/10.1002/glia.20424
  • Calza L., Fernandez M., Giuliani A., Aloe L., Giardino L. (2002). Thyroid hormone activates oligodendrocyte precursors and increases a myelin-forming protein and NGF content in the spinal cord during experimental allergic encephalomyelitis. Proc Natl Acad Sci U S A, 99(5), 3258–3263. https://doi.org/10.1073/pnas.052704499
  • Cellerino A., Carroll P., Thoenen H., Barde Y. A. (1997). Reduced size of retinal ganglion cell axons and hypomyelination in mice lacking brain-derived neurotrophic factor. Mol Cell Neurosci, 9(5–6), 397–408. https://doi.org/10.1006/mcne.1997.0641
  • Chang-Ileto B., Frere S. G., Chan R. B., Voronov S. V., Roux A., Di Paolo G. (2011). Synaptojanin 1-mediated PI(4,5)P2 hydrolysis is modulated by membrane curvature and facilitates membrane fission. Dev Cell, 20(2), 206–218. https://doi.org/10.1016/j.devcel.2010.12.008
  • Charles P., Hernandez M. P., Stankoff B., Aigrot M. S., Colin C., Rougon G., Zalc B., Lubetzki C. (2000). Negative regulation of central nervous system myelination by polysialylated-neural cell adhesion molecule. Proc Natl Acad Sci U S A, 97(13), 7585–7590. https://doi.org/10.1073/pnas.100076197
  • Chew L. J., King W. C., Kennedy A., Gallo V. (2005). Interferon-gamma inhibits cell cycle exit in differentiating oligodendrocyte progenitor cells. Glia, 52(2), 127–143. https://doi.org/10.1002/glia.20232
  • Coman I., Aigrot M. S., Seilhean D., Reynolds R., Girault J. A., Zalc B., Lubetzki C. (2006). Nodal, paranodal and juxtaparanodal axonal proteins during demyelination and remyelination in multiple sclerosis. Brain, 129(12), 3186–3195. https://doi.org/10.1093/brain/awl144
  • Dai Z. M., Sun S., Wang C., Huang H., Hu X., Zhang Z., Lu Q. R., Qiu M. (2014). Stage-specific regulation of oligodendrocyte development by Wnt/β-catenin signaling. J Neurosci, 34(25), 8467–8473. https://doi.org/10.1523/jneurosci.0311-14.2014
  • Dawson M. R., Polito A., Levine J. M., Reynolds R. (2003). NG2-expressing Glial progenitor cells: An abundant and widespread population of cycling cells in the adult rat CNS. Mol Cell Neurosci, 24(2), 476–488. https://doi.org/10.1016/s1044-7431(03)00210-0
  • Dietrich R. B., Bradley W. G., Zaragoza E. J. t., Otto R. J., Taira R. K., Wilson G. H., Kangarloo H. (1988). MR evaluation of early myelination patterns in normal and developmentally delayed infants. AJR Am J Roentgenol, 150(4), 889–896. https://doi.org/10.2214/ajr.150.4.889
  • Dudek H., Datta S. R., Franke T. F., Birnbaum M. J., Yao R., Cooper G. M., Segal R. A., Kaplan D. R., Greenberg M. E. (1997). Regulation of neuronal survival by the serine-threonine protein kinase Akt. Science (New York, N.Y.), 275(5300), 661–665. https://doi.org/10.1126/science.275.5300.661
  • Edgar J. M., Garbern J. (2004). The myelinated axon is dependent on the myelinating cell for support and maintenance: Molecules involved. J Neurosci Res, 76(5), 593–598. https://doi.org/10.1002/jnr.20063
  • Emery B., Lu Q. R. (2015). Transcriptional and epigenetic regulation of oligodendrocyte development and myelination in the central nervous system. Cold Spring Harb Perspect Biol, 7(9), a020461. https://doi.org/10.1101/cshperspect.a020461
  • Fancy S. P., Baranzini S. E., Zhao C., Yuk D. I., Irvine K. A., Kaing S., Sanai N., Franklin R. J., Rowitch D. H. (2009). Dysregulation of the wnt pathway inhibits timely myelination and remyelination in the mammalian CNS. Genes Dev, 23(13), 1571–1585. https://doi.org/10.1101/gad.1806309
  • Fancy S. P., Harrington E. P., Yuen T. J., Silbereis J. C., Zhao C., Baranzini S. E., Bruce C. C., Otero J. J., Huang E. J., Nusse R., Franklin R. J., Rowitch D. H. (2011). Axin2 as regulatory and therapeutic target in newborn brain injury and remyelination. Nat Neurosci, 14(8), 1009–1016. https://doi.org/10.1038/nn.2855
  • Fancy S. P., Zhao C., Franklin R. J. (2004). Increased expression of Nkx2.2 and Olig2 identifies reactive oligodendrocyte progenitor cells responding to demyelination in the adult CNS. Mol Cell Neurosci, 27(3), 247–254. https://doi.org/10.1016/j.mcn.2004.06.015
  • Farías-Serratos B. M., Lazcano I., Villalobos P., Darras V. M., Orozco A. (2021). Thyroid hormone deficiency during zebrafish development impairs central nervous system myelination. PLoS One, 16(8), e0256207. https://doi.org/10.1371/journal.pone.0256207
  • Feigenson K., Reid M., See J., Crenshaw E. B.III, Grinspan J. B. (2009). Wnt signaling is sufficient to perturb oligodendrocyte maturation. Mol Cell Neurosci, 42(3), 255–265. https://doi.org/10.1016/j.mcn.2009.07.010
  • Flores A. I., Narayanan S. P., Morse E. N., Shick H. E., Yin X., Kidd G., Avila R. L., Kirschner D. A., Macklin W. B. (2008). Constitutively active akt induces enhanced myelination in the CNS. J Neurosci, 28(28), 7174–7183. https://doi.org/10.1523/jneurosci.0150-08.2008
  • Foerster S., Guzman de la Fuente A., Kagawa Y., Bartels T., Owada Y., Franklin R. J. M. (2020). The fatty acid binding protein FABP7 is required for optimal oligodendrocyte differentiation during myelination but not during remyelination. Glia, 68(7), 1410–1420. https://doi.org/10.1002/glia.23789
  • Franke T. F., Kaplan D. R., Cantley L. C. (1997). PI3K: Downstream AKTion blocks apoptosis. Cell, 88(4), 435–437. https://doi.org/10.1016/s0092-8674(00)81883-8
  • Furusho M., Ishii A., Bansal R. (2017). Signaling by FGF receptor 2, not FGF receptor 1, regulates myelin thickness through activation of ERK1/2-MAPK, which promotes mTORC1 activity in an Akt-independent manner. J Neurosci, 37(11), 2931–2946. https://doi.org/10.1523/jneurosci.3316-16.2017
  • Gargareta V. I., Reuschenbach J., Siems S. B., Sun T., Piepkorn L., Mangana C., Späte E., Goebbels S., Huitinga I., Möbius W., Nave K. A., Jahn O., Werner H. B. (2022). Conservation and divergence of myelin proteome and oligodendrocyte transcriptome profiles between humans and mice. Elife, 11, e77019. https://doi.org/10.7554/eLife.77019.
  • Genoud S., Lappe-Siefke C., Goebbels S., Radtke F., Aguet M., Scherer S. S., Suter U., Nave K. A., Mantei N. (2002). Notch1 control of oligodendrocyte differentiation in the spinal cord. J Cell Biol, 158(4), 709–718. https://doi.org/10.1083/jcb.200202002
  • Gitik M., Liraz-Zaltsman S., Oldenborg P. A., Reichert F., Rotshenker S. (2011). Myelin down-regulates myelin phagocytosis by microglia and macrophages through interactions between CD47 on myelin and SIRPα (signal regulatory protein-α) on phagocytes. J Neuroinflammation, 8, 24. https://doi.org/10.1186/1742-2094-8-24
  • Goebbels S., Oltrogge J. H., Kemper R., Heilmann I., Bormuth I., Wolfer S., Wichert S. P., Mobius W., Liu X., Lappe-Siefke C., Rossner M. J., Groszer M., Suter U., Frahm J., Boretius S., Nave K. A. (2010). Elevated phosphatidylinositol 3,4,5-trisphosphate in glia triggers cell-autonomous membrane wrapping and myelination. J Neurosci, 30(26), 8953–8964. https://doi.org/10.1523/jneurosci.0219-10.2010
  • Goebbels S., Wieser G. L., Pieper A., Spitzer S., Weege B., Yan K., Edgar J. M., Yagensky O., Wichert S. P., Agarwal A., Karram K., Renier N., Tessier-Lavigne M., Rossner M. J., Káradóttir R. T., Nave K. A. (2017). A neuronal PI(3,4,5)P(3)-dependent program of oligodendrocyte precursor recruitment and myelination. Nat Neurosci, 20(1), 10–15. https://doi.org/10.1038/nn.4425
  • Grinspan J. B. (2015). Bone morphogenetic proteins: Inhibitors of myelination in development and disease. Vitam Horm, 99, 195–222. https://doi.org/10.1016/bs.vh.2015.05.005
  • Grinspan J. B., Edell E., Carpio D. F., Beesley J. S., Lavy L., Pleasure D., Golden J. A. (2000). Stage-specific effects of bone morphogenetic proteins on the oligodendrocyte lineage. J Neurobiol, 43(1), 1–17. https://doi.org/10.1002/(SICI)1097-4695(200004)43:1<1::AID-NEU1gt;3.0.CO;2-0
  • Hammond E., Lang J., Maeda Y., Pleasure D., Angus-Hill M., Xu J., Horiuchi M., Deng W., Guo F. (2015). The wnt effector transcription factor 7-like 2 positively regulates oligodendrocyte differentiation in a manner independent of wnt/β-catenin signaling. J Neurosci, 35(12), 5007–5022. https://doi.org/10.1523/jneurosci.4787-14.2015
  • Harrington E. P., Zhao C., Fancy S. P., Kaing S., Franklin R. J., Rowitch D. H. (2010). Oligodendrocyte PTEN is required for myelin and axonal integrity, not remyelination. Ann Neurol, 68(5), 703–716. https://doi.org/10.1002/ana.22090
  • Hildebrand C., Remahl S., Persson H., Bjartmar C. (1993). Myelinated nerve fibres in the CNS. Prog Neurobiol, 40(3), 319–384. https://doi.org/10.1016/0301-0082(93)90015-k
  • Hines J. H., Ravanelli A. M., Schwindt R., Scott E. K., Appel B. (2015). Neuronal activity biases axon selection for myelination in vivo. Nat Neurosci, 18(5), 683–689. https://doi.org/10.1038/nn.3992
  • Hornig J., Fröb F., Vogl M. R., Hermans-Borgmeyer I., Tamm E. R., Wegner M. (2013). The transcription factors Sox0 and Myrf define an essential regulatory network module in differentiating oligodendrocytes. PLoS Genet, 9(10), e1003907. https://doi.org/10.1371/journal.pgen.1003907
  • Hüppi P. S., Warfield S., Kikinis R., Barnes P. D., Zientara G. P., Jolesz F. A., Tsuji M. K., Volpe J. J. (1998). Quantitative magnetic resonance imaging of brain development in premature and mature newborns. Ann Neurol, 43(2), 224–235. https://doi.org/10.1002/ana.410430213
  • Ishii A., Furusho M., Dupree J. L., Bansal R. (2016). Strength of ERK1/2 MAPK activation determines its effect on myelin and axonal integrity in the adult CNS. J Neurosci, 36(24), 6471–6487. https://doi.org/10.1523/jneurosci.0299-16.2016
  • Ishii A., Furusho M., Macklin W., Bansal R. (2019). Independent and cooperative roles of the Mek/ERK1/2-MAPK and PI3 K/Akt/mTOR pathways during developmental myelination and in adulthood. Glia, 67(7), 1277–1295. https://doi.org/10.1002/glia.23602
  • Jahn O., Siems S. B., Kusch K., Hesse D., Jung R. B., Liepold T., Uecker M., Sun T., Werner H. B. (2020). The CNS myelin proteome: Deep profile and persistence after post-mortem delay. Front Cell Neurosci, 14, 239. https://doi.org/10.3389/fncel.2020.00239
  • Jakovcevski I., Mo Z., Zecevic N. (2007). Down-regulation of the axonal polysialic acid-neural cell adhesion molecule expression coincides with the onset of myelination in the human fetal forebrain. Neuroscience, 149(2), 328–337. https://doi.org/10.1016/j.neuroscience.2007.07.044
  • Jeffries M. A., Urbanek K., Torres L., Wendell S. G., Rubio M. E., Fyffe-Maricich S. L. (2016). ERK1/2 Activation in preexisting oligodendrocytes of adult mice drives new myelin synthesis and enhanced CNS function. J Neurosci, 36(35), 9186–9200. https://doi.org/10.1523/jneurosci.1444-16.2016
  • Káradóttir R., Attwell D. (2007). Neurotransmitter receptors in the life and death of oligodendrocytes. Neuroscience, 145(4), 1426–1438. https://doi.org/10.1016/j.neuroscience.2006.08.070
  • Kessaris N., Fogarty M., Iannarelli P., Grist M., Wegner M., Richardson W. D. (2006). Competing waves of oligodendrocytes in the forebrain and postnatal elimination of an embryonic lineage. Nat Neurosci, 9(2), 173–179. https://doi.org/10.1038/nn1620
  • Kinney H. C., Brody B. A., Kloman A. S., Gilles F. H. (1988). Sequence of central nervous system myelination in human infancy. II. Patterns of myelination in autopsied infants. J Neuropathol Exp Neurol, 47(3), 217–234. https://doi.org/10.1097/00005072-198805000-00003
  • Kirby B. B., Takada N., Latimer A. J., Shin J., Carney T. J., Kelsh R. N., Appel B. (2006). In vivo time-lapse imaging shows dynamic oligodendrocyte progenitor behavior during zebrafish development. Nat Neurosci, 9(12), 1506–1511. https://doi.org/10.1038/nn1803
  • Kolodny E. H. (1993). Dysmyelinating and demyelinating conditions in infancy. Curr Opin Neurol Neurosurg, 6(3), 379–386.
  • Lang J., Maeda Y., Bannerman P., Xu J., Horiuchi M., Pleasure D., Guo F. (2013). Adenomatous polyposis coli regulates oligodendroglial development. J Neurosci, 33(7), 3113–3130. https://doi.org/10.1523/jneurosci.3467-12.2013
  • Lee S., Chong S. Y., Tuck S. J., Corey J. M., Chan J. R. (2013). A rapid and reproducible assay for modeling myelination by oligodendrocytes using engineered nanofibers. Nat Protoc, 8(4), 771–782. https://doi.org/10.1038/nprot.2013.039
  • Li H., Lu Y., Smith H. K., Richardson W. D. (2007). Olig1 and Sox10 interact synergistically to drive myelin basic protein transcription in oligodendrocytes. J Neurosci, 27(52), 14375–14382. https://doi.org/10.1523/jneurosci.4456-07.2007
  • Ligon K. L., Kesari S., Kitada M., Sun T., Arnett H. A., Alberta J. A., Anderson D. J., Stiles C. D., Rowitch D. H. (2006). Development of NG2 neural progenitor cells requires Olig gene function. Proc Natl Acad Sci U S A, 103(20), 7853–7858. https://doi.org/10.1073/pnas.0511001103
  • Liu J., Dietz K., DeLoyht J. M., Pedre X., Kelkar D., Kaur J., Vialou V., Lobo M. K., Dietz D. M., Nestler E. J., Dupree J., Casaccia P. (2012). Impaired adult myelination in the prefrontal cortex of socially isolated mice. Nat Neurosci, 15(12), 1621–1623. https://doi.org/10.1038/nn.3263
  • Lu Q. R., Sun T., Zhu Z., Ma N., Garcia M., Stiles C. D., Rowitch D. H. (2002). Common developmental requirement for Olig function indicates a motor neuron/oligodendrocyte connection. Cell, 109(1), 75–86. https://doi.org/10.1016/s0092-8674(02)00678-5
  • Lundgaard I., Luzhynskaya A., Stockley J. H., Wang Z., Evans K. A., Swire M., Volbracht K., Gautier H. O., Franklin R. J., Attwell D., Káradóttir R. T. (2013). Neuregulin and BDNF induce a switch to NMDA receptor-dependent myelination by oligodendrocytes. PLoS Biol, 11(12), e1001743. https://doi.org/10.1371/journal.pbio.1001743
  • Maire C. L., Wegener A., Kerninon C., Nait Oumesmar B. (2010). Gain-of-function of olig transcription factors enhances oligodendrogenesis and myelination. Stem Cells, 28(9), 1611–1622. https://doi.org/10.1002/stem.480
  • Makinodan M., Rosen K. M., Ito S., Corfas G. (2012). A critical period for social experience-dependent oligodendrocyte maturation and myelination. Science, 337(6100), 1357–1360. https://doi.org/10.1126/science.1220845
  • Mayoral S. R., Etxeberria A., Shen Y. A., Chan J. R. (2018). Initiation of CNS myelination in the optic nerve is dependent on axon caliber. Cell Rep, 25(3), 544–550. e543. https://doi.org/10.1016/j.celrep.2018.09.052
  • McKinnon R. D., Matsui T., Dubois-Dalcq M., Aaronsont S. A. (1990). FGF modulates the PDGF-driven pathway of oligodendrocyte development. Neuron, 5(5), 603–614. https://doi.org/10.1016/0896-6273(90)90215-2
  • McMahon H. T., Boucrot E. (2015). Membrane curvature at a glance. J Cell Sci, 128(6), 1065–1070. https://doi.org/10.1242/jcs.114454
  • Mensch S., Baraban M., Almeida R., Czopka T., Ausborn J., El Manira A., Lyons D. A. (2015). Synaptic vesicle release regulates myelin sheath number of individual oligodendrocytes in vivo. Nat Neurosci, 18(5), 628–630. https://doi.org/10.1038/nn.3991
  • Mi S., Hu B., Hahm K., Luo Y., Kam Hui E. S., Yuan Q., Wong W. M., Wang L., Su H., Chu T. H., Guo J., Zhang W., So K. F., Pepinsky B., Shao Z., Graff C., Garber E., Jung V., Wu E. X., Wu W. (2007). LINGO-1 antagonist promotes spinal cord remyelination and axonal integrity in MOG-induced experimental autoimmune encephalomyelitis. Nat Med, 13(10), 1228–1233. https://doi.org/10.1038/nm1664
  • Mi S., Miller R. H., Lee X., Scott M. L., Shulag-Morskaya S., Shao Z., Chang J., Thill G., Levesque M., Zhang M., Hession C., Sah D., Trapp B., He Z., Jung V., McCoy J. M., Pepinsky R. B. (2005). LINGO-1 negatively regulates myelination by oligodendrocytes. Nat Neurosci, 8(6), 745–751. https://doi.org/10.1038/nn1460
  • Miranda M., Morici J. F., Zanoni M. B., Bekinschtein P. (2019). Brain-derived neurotrophic factor: a key molecule for memory in the healthy and the pathological brain. Front Cell Neurosci, 13. https://doi.org/10.3389/fncel.2019.00363
  • Mitew S., Gobius I., Fenlon L. R., McDougall S. J., Hawkes D., Xing Y. L., Bujalka H., Gundlach A. L., Richards L. J., Kilpatrick T. J., Merson T. D., Emery B. (2018). Pharmacogenetic stimulation of neuronal activity increases myelination in an axon-specific manner. Nat Commun, 9(1), 306. https://doi.org/10.1038/s41467-017-02719-2
  • Monje M. (2018). Myelin plasticity and nervous system function. Ann Rev Neurosci, 41, 61–76. https://doi.org/10.1146/annurev-neuro-080317-061853
  • Morreale de Escobar G., Obregon M. J., Escobar del Rey F. (1987). Fetal and maternal thyroid hormones. Horm Res, 26(1–4), 12–27. https://doi.org/10.1159/000180681
  • Morris J. K., Willard B. B., Yin X., Jeserich G., Kinter M., Trapp B. D. (2004). The 36 K protein of zebrafish CNS myelin is a short-chain dehydrogenase. Glia, 45(4), 378–391. https://doi.org/10.1002/glia.10338
  • Münzel E. J., Schaefer K., Obirei B., Kremmer E., Burton E. A., Kuscha V., Becker C. G., Brösamle C., Williams A., Becker T. (2012). Claudin k is specifically expressed in cells that form myelin during development of the nervous system and regeneration of the optic nerve in adult zebrafish. Glia, 60(2), 253–270. https://doi.org/10.1002/glia.21260
  • Narayanan S. P., Flores A. I., Wang F., Macklin W. B. (2009). Akt signals through the mammalian target of rapamycin pathway to regulate CNS myelination. J Neurosci, 29(21), 6860–6870. https://doi.org/10.1523/jneurosci.0232-09.2009
  • Nave K. A., Werner H. B. (2014). Myelination of the nervous system: Mechanisms and functions. Ann Rev Cell Dev Biol, 30, 503–533. https://doi.org/10.1146/annurev-cellbio-100913-013101
  • Nawaz S., Sanchez P., Schmitt S., Snaidero N., Mitkovski M., Velte C., Bruckner B. R., Alexopoulos I., Czopka T., Jung S. Y., Rhee J. S., Janshoff A., Witke W., Schaap I. A. T., Lyons D. A., Simons M. (2015). Actin filament turnover drives leading edge growth during myelin sheath formation in the central nervous system. Dev Cell, 34(2), 139–151. https://doi.org/10.1016/j.devcel.2015.05.013
  • Newman M. P., Féron F., Mackay-Sim A. (2000). Growth factor regulation of neurogenesis in adult olfactory epithelium. Neuroscience, 99(2), 343–350. https://doi.org/10.1016/s0306-4522(00)00194-9
  • Nicholas R. S., Stevens S., Wing M. G., Compston D. A. (2002). Microglia-derived IGF-2 prevents TNFalpha induced death of mature oligodendrocytes in vitro. J Neuroimmunol, 124(1–2), 36–44. https://doi.org/10.1016/s0165-5728(02)00011-5
  • Noble M., Murray K., Stroobant P., Waterfield M. D., Riddle P. (1988). Platelet-derived growth factor promotes division and motility and inhibits premature differentiation of the oligodendrocyte/type-2 astrocyte progenitor cell. Nature, 333(6173), 560–562. https://doi.org/10.1038/333560a0
  • Paes de Faria J., Kessaris N., Andrew P., Richardson W. D., Li H. (2014). New Olig1 null mice confirm a non-essential role for Olig1 in oligodendrocyte development. BMC Neurosci, 15, 12. https://doi.org/10.1186/1471-2202-15-12
  • Pang Y., Fan L. W., Tien L. T., Dai X., Zheng B., Cai Z., Lin R. C., Bhatt A. (2013). Differential roles of astrocyte and microglia in supporting oligodendrocyte development and myelination in vitro. Brain Behav, 3(5), 503–514. https://doi.org/10.1002/brb3.152
  • Park H. C., Mehta A., Richardson J. S., Appel B. (2002). Olig2 is required for zebrafish primary motor neuron and oligodendrocyte development. Dev Biol, 248(2), 356–368. https://doi.org/10.1006/dbio.2002.0738
  • Pedraza L., Huang J. K., Colman D. (2009). Disposition of axonal caspr with respect to glial cell membranes: Implications for the process of myelination. J Neurosci Res, 87(15), 3480–3491. https://doi.org/10.1002/jnr.22004
  • Phan B. N., Bohlen J. F., Davis B. A., Ye Z., Chen H. Y., Mayfield B., Sripathy S. R., Cerceo Page S., Campbell M. N., Smith H. L., Gallop D., Kim H., Thaxton C. L., Simon J. M., Burke E. E., Shin J. H., Kennedy A. J., Sweatt J. D., Philpot B. D., Jaffe A. E., Maher B. J. (2020). A myelin-related transcriptomic profile is shared by Pitt-Hopkins syndrome models and human autism spectrum disorder. Nat Neurosci, 23(3), 375–385. https://doi.org/10.1038/s41593-019-0578-x
  • Philips T., Rothstein J. D. (2017). Oligodendroglia: Metabolic supporters of neurons. J Clin Invest, 127(9), 3271–3280. https://doi.org/10.1172/JCI90610
  • Raff M. C., Lillien L. E., Richardson W. D., Burne J. F., Noble M. D. (1988). Platelet-derived growth factor from astrocytes drives the clock that times oligodendrocyte development in culture. Nature, 333(6173), 562–565. https://doi.org/10.1038/333562a0
  • Readhead C., Hood L. (1990). The dysmyelinating mouse mutations shiverer (Shi) and myelin deficient (shimld). Behav Genet, 20(2), 213–234. https://doi.org/10.1007/BF01067791
  • Rosenberg S. S., Kelland E. E., Tokar E., De la Torre A. R., Chan J. R. (2008). The geometric and spatial constraints of the microenvironment induce oligodendrocyte differentiation. Proc Natl Acad Sci U S A, 105(38), 14662–14667. https://doi.org/10.1073/pnas.0805640105
  • Schaefer K., Brösamle C. (2009). Zwilling-A and -B, two related myelin proteins of teleosts, which originate from a single bicistronic transcript. Mol Biol Evol, 26(3), 495–499. https://doi.org/10.1093/molbev/msn298
  • Shen S., Sandoval J., Swiss V. A., Li J., Dupree J., Franklin R. J., Casaccia-Bonnefil P. (2008). Age-dependent epigenetic control of differentiation inhibitors is critical for remyelination efficiency. Nat Neurosci, 11(9), 1024–1034. https://doi.org/10.1038/nn.2172
  • Sherman D. L., Brophy P. J. (2005). Mechanisms of axon ensheathment and myelin growth. Nat Rev Neurosci, 6(9), 683–690. https://doi.org/10.1038/nrn1743
  • Shigemoto-Mogami Y., Hoshikawa K., Goldman J. E., Sekino Y., Sato K. (2014). Microglia enhance neurogenesis and oligodendrogenesis in the early postnatal subventricular zone. J Neurosci, 34(6), 2231–2243. https://doi.org/10.1523/jneurosci.1619-13.2014
  • Siems S. B., Jahn O., Hoodless L. J., Jung R. B., Hesse D., Möbius W., Czopka T., Werner H. B. (2021). Proteome profile of myelin in the zebrafish brain. Front Cell Dev Biol, 9, 640169. https://doi.org/10.3389/fcell.2021.640169
  • Simons M., Nave K. A. (2015). Oligodendrocytes: Myelination and axonal support. Cold Spring Harbor Perspect Biol, 8(1), a020479. https://doi.org/10.1101/cshperspect.a020479
  • Snaidero N., Mobius W., Czopka T., Hekking L. H., Mathisen C., Verkleij D., Goebbels S., Edgar J., Merkler D., Lyons D. A., Nave K. A., Simons M. (2014). Myelin membrane wrapping of CNS axons by PI(3,4,5)P3-dependent polarized growth at the inner tongue. Cell, 156(1–2), 277–290. https://doi.org/10.1016/j.cell.2013.11.044
  • Snaidero N., Simons M. (2014). Myelination at a glance. J Cell Sci, 127(Pt 14), 2999–3004. https://doi.org/10.1242/jcs.151043
  • Stankoff B., Aigrot M. S., Noël F., Wattilliaux A., Zalc B., Lubetzki C. (2002). Ciliary neurotrophic factor (CNTF) enhances myelin formation: A novel role for CNTF and CNTF-related molecules. J Neurosci, 22(21), 9221–9227. https://doi.org/10.1523/jneurosci.22-21-09221.2002
  • Stolt C. C., Lommes P., Friedrich R. P., Wegner M. (2004). Transcription factors Sox8 and Sox10 perform non-equivalent roles during oligodendrocyte development despite functional redundancy. Development, 131(10), 2349–2358. https://doi.org/10.1242/dev.01114
  • Stolt C. C., Lommes P., Sock E., Chaboissier M. C., Schedl A., Wegner M. (2003). The Sox9 transcription factor determines glial fate choice in the developing spinal cord. Genes Dev, 17(13), 1677–1689. https://doi.org/10.1101/gad.259003
  • Stolt C. C., Rehberg S., Ader M., Lommes P., Riethmacher D., Schachner M., Bartsch U., Wegner M. (2002). Terminal differentiation of myelin-forming oligodendrocytes depends on the transcription factor Sox10. Genes Dev, 16(2), 165–170. https://doi.org/10.1101/gad.215802
  • Sun L. O., Mulinyawe S. B., Collins H. Y., Ibrahim A., Li Q., Simon D. J., Tessier-Lavigne M., Barres B. A. (2018). Spatiotemporal control of CNS myelination by oligodendrocyte programmed cell death through the TFEB-PUMA axis. Cell, 175(7), 1811–1826. e1821. https://doi.org/10.1016/j.cell.2018.10.044
  • Takada N., Kucenas S., Appel B. (2010). Sox10 is necessary for oligodendrocyte survival following axon wrapping. Glia, 58(8), 996–1006. https://doi.org/10.1002/glia.20981
  • Taveggia C., Zanazzi G., Petrylak A., Yano H., Rosenbluth J., Einheber S., Xu X., Esper R. M., Loeb J. A., Shrager P., Chao M. V., Falls D. L., Role L., Salzer J. L. (2005). Neuregulin-1 type III determines the ensheathment fate of axons. Neuron, 47(5), 681–694. https://doi.org/10.1016/j.neuron.2005.08.017
  • Tawk M., Makoukji J., Belle M., Fonte C., Trousson A., Hawkins T., Li H., Ghandour S., Schumacher M., Massaad C. (2011). Wnt/beta-catenin signaling is an essential and direct driver of myelin gene expression and myelinogenesis. J Neurosci, 31(10), 3729–3742. https://doi.org/10.1523/jneurosci.4270-10.2011
  • Thomason E. J., Escalante M., Osterhout D. J., Fuss B. (2020). The oligodendrocyte growth cone and its actin cytoskeleton: A fundamental element for progenitor cell migration and CNS myelination. Glia, 68(7), 1329–1346. https://doi.org/10.1002/glia.23735
  • Tiane A., Schepers M., Rombaut B., Hupperts R., Prickaerts J., Hellings N., van den Hove D., Vanmierlo T. (2019). From OPC to oligodendrocyte: An epigenetic journey. Cells, 8(10), 1236. https://doi.org/10.3390/cells8101236
  • Timsit S., Martinez S., Allinquant B., Peyron F., Puelles L., Zalc B. (1995). Oligodendrocytes originate in a restricted zone of the embryonic ventral neural tube defined by DM-20 mRNA expression. J Neurosci, 15(2), 1012–1024. https://doi.org/10.1523/jneurosci.15-02-01012.1995
  • Traiffort E., Kassoussi A., Zahaf A., Laouarem Y. (2020). Astrocytes and microglia as major players of myelin production in normal and pathological conditions. Front Cell Neurosci, 14, 79. https://doi.org/10.3389/fncel.2020.00079
  • Tsai H. H., Frost E., To V., Robinson S., Ffrench-Constant C., Geertman R., Ransohoff R. M., Miller R. H. (2002). The chemokine receptor CXCR2 controls positioning of oligodendrocyte precursors in developing spinal cord by arresting their migration. Cell, 110(3), 373–383. https://doi.org/10.1016/s0092-8674(02)00838-3
  • Tsai H. H., Niu J., Munji R., Davalos D., Chang J., Zhang H., Tien A. C., Kuo C. J., Chan J. R., Daneman R., Fancy S. P. (2016). Oligodendrocyte precursors migrate along vasculature in the developing nervous system. Science, 351(6271), 379–384. https://doi.org/10.1126/science.aad3839
  • Vela J. M., Molina-Holgado E., Arévalo-Martín A., Almazán G., Guaza C. (2002). Interleukin-1 regulates proliferation and differentiation of oligodendrocyte progenitor cells. Mol Cell Neurosci, 20(3), 489–502. https://doi.org/10.1006/mcne.2002.1127
  • Wahl S. E., McLane L. E., Bercury K. K., Macklin W. B., Wood T. L. (2014). Mammalian target of rapamycin promotes oligodendrocyte differentiation, initiation and extent of CNS myelination. J Neurosci, 34(13), 4453–4465. https://doi.org/10.1523/jneurosci.4311-13.2014
  • Wang S., Sdrulla A. D., diSibio G., Bush G., Nofziger D., Hicks C., Weinmaster G., Barres B. A. (1998). Notch receptor activation inhibits oligodendrocyte differentiation. Neuron, 21(1), 63–75. https://doi.org/10.1016/s0896-6273(00)80515-2
  • Watanabe M., Hadzic T., Nishiyama A. (2004). Transient upregulation of Nkx2.2 expression in oligodendrocyte lineage cells during remyelination. Glia, 46(3), 311–322. https://doi.org/10.1002/glia.20006
  • Wegener A., Deboux C., Bachelin C., Frah M., Kerninon C., Seilhean D., Weider M., Wegner M., Nait-Oumesmar B. (2015). Gain of Olig2 function in oligodendrocyte progenitors promotes remyelination. Brain, 138(Pt 1), 120–135. https://doi.org/10.1093/brain/awu375
  • Wolswijk G., Noble M. (1989). Identification of an adult-specific glial progenitor cell. Development, 105(2), 387–400. https://doi.org/10.1242/dev.105.2.387
  • Xin M., Yue T., Ma Z., Wu F. F., Gow A., Lu Q. R. (2005). Myelinogenesis and axonal recognition by oligodendrocytes in brain are uncoupled in Olig1-null mice. J Neurosci, 25(6), 1354–1365. https://doi.org/10.1523/jneurosci.3034-04.2005
  • Ye P., Li L., Richards R. G., DiAugustine R. P., D’Ercole A. J. (2002). Myelination is altered in insulin-like growth factor-I null mutant mice. J Neurosci, 22(14), 6041–6051. https://doi.org/10.1523/jneurosci.22-14-06041.2002
  • Yin W., Hu B. (2014). Knockdown of Lingo1b protein promotes myelination and oligodendrocyte differentiation in zebrafish. Exp Neurol, 251, 72–83. https://doi.org/10.1016/j.expneurol.2013.11.012
  • Zhang K., Chen S., Yang Q., Guo S., Chen Q., Liu Z., Li L., Jiang M., Li H., Hu J., Pan X., Deng W., Xiao N., Wang B., Wang Z. X., Zhang L., Mo W. (2022). The oligodendrocyte transcription factor 2 OLIG2 regulates transcriptional repression during myelinogenesis in rodents. Nat Commun, 13(1), 1423. https://doi.org/10.1038/s41467-022-29068-z
  • Zhao Y. Y., Shi X. Y., Qiu X., Lu W., Yang S., Li C., Chen L., Zhang L., Cheng G. H., Tang Y. (2012). Enriched environment increases the myelinated nerve fibers of aged rat corpus callosum. Anat Rec (Hoboken), 295(6), 999–1005. https://doi.org/10.1002/ar.22446
  • Zhu X., Zuo H., Maher B. J., Serwanski D. R., LoTurco J. J., Lu Q. R., Nishiyama A. (2012). Olig2-dependent developmental fate switch of NG2 cells. Development, 139(13), 2299–2307. https://doi.org/10.1242/dev.078873
  • Zuchero J. B., Fu M. M., Sloan S. A., Ibrahim A., Olson A., Zaremba A., Dugas J. C., Wienbar S., Caprariello A. V., Kantor C., Leonoudakis D., Lariosa-Willingham K., Kronenberg G., Gertz K., Soderling S. H., Miller R. H., Barres B. A. (2015). CNS Myelin wrapping is driven by actin disassembly. Dev Cell, 34(2), 152–167. https://doi.org/10.1016/j.devcel.2015.06.011