1
Views
9
CrossRef citations to date
0
Altmetric
Review

How Oxidative Stress Induces Depression?

, , , , & ORCID Icon
Article: 17590914231181037 | Received 27 Jan 2023, Accepted 23 May 2023, Published online: 16 Jul 2024

References

  • Adcock I. M., Cosio B., Tsaprouni L., Barnes P. J., Ito K. (2005). Redox regulation of histone deacetylases and glucocorticoid-mediated inhibition of the inflammatory response. Antioxidants & Redox Signaling, 7(1-2), 144–152. https://doi.org/10.1089/ars.2005.7.144
  • Ait-Belgnaoui A., Durand H., Cartier C., Chaumaz G., Eutamene H., Ferrier L., Houdeau E., Fioramonti J., Bueno L., Theodorou V. (2012). Prevention of gut leakiness by a probiotic treatment leads to attenuated HPA response to an acute psychological stress in rats. Psychoneuroendocrinology, 37(11), 1885–1895. https://doi.org/10.1016/j.psyneuen.2012.03.024
  • Ali S. S., Ahsan H., Zia M. K., Siddiqui T., Khan F. H. (2020). Understanding oxidants and antioxidants: Classical team with new players. Journal of Food Biochemistry, 44(3), e13145. https://doi.org/10.1111/jfbc.13145
  • Allen J., Romay-Tallon R., Brymer K. J., Caruncho H. J., Kalynchuk L. E. (2018). Mitochondria and mood: Mitochondrial dysfunction as a key player in the manifestation of depression. Frontiers in Neuroscience, 12, 386. https://doi.org/10.3389/fnins.2018.00386
  • Almeida R. D., Manadas B. J., Melo C. V., Gomes J. R., Mendes C. S., Grãos M. M., Carvalho R. F., Carvalho A. P., Duarte C. B. (2005). Neuroprotection by BDNF against glutamate-induced apoptotic cell death is mediated by ERK and PI3-kinase pathways. Cell Death & Differentiation, 12(10), 1329–1343. https://doi.org/10.1038/sj.cdd.4401662
  • Arango-Lievano M., Borie A. M., Dromard Y., Murat M., Desarmenien M. G., Garabedian M. J., Jeanneteau F. (2019). Persistence of learning-induced synapses depends on neurotrophic priming of glucocorticoid receptors. Proceedings of the National Academy of Sciences, 116(26), 13097–13106. https://doi.org/10.1073/pnas.1903203116
  • Atlante A., Calissano P., Bobba A., Giannattasio S., Marra E., Passarella S. (2001). Glutamate neurotoxicity, oxidative stress and mitochondria. FEBS Letters, 497(1), 1–5. https://doi.org/10.1016/s0014-5793(01)02437-1
  • Autry A. E., Adachi M., Nosyreva E., Na E. S., Los M. F., Cheng P. F., Kavalali E. T., Monteggia L. M. (2011). NMDA receptor blockade at rest triggers rapid behavioural antidepressant responses. Nature, 475(7354), 91–95. https://doi.org/10.1038/nature10130
  • Autry A. E., Monteggia L. M. (2012). Brain-derived neurotrophic factor and neuropsychiatric disorders. Pharmacological Reviews, 64(2), 238–258. https://doi.org/10.1124/pr.111.005108
  • Aviello G., Knaus U. G. (2018). NADPH oxidases and ROS signaling in the gastrointestinal tract. Mucosal Immunology, 11(4), 1011–1023. https://doi.org/10.1038/s41385-018-0021-8
  • Bai Z., Gao T., Zhang R., Lu Y., Tian J., Wang T., Zhao K., Wang H. (2023). Inhibition of IL-6 methylation by Saikosaponin C regulates neuroinflammation to alleviate depression. International Immunopharmacology, 118, 110043. https://doi.org/10.1016/j.intimp.2023.110043
  • Bailey M. T., Dowd S. E., Galley J. D., Hufnagle A. R., Allen R. G., Lyte M. (2011). Exposure to a social stressor alters the structure of the intestinal microbiota: Implications for stressor-induced immunomodulation. Brain, Behavior, and Immunity, 25(3), 397–407. https://doi.org/10.1016/j.bbi.2010.10.023
  • Ballard J. W. O., Towarnicki S. G. (2020). Mitochondria, the gut microbiome and ROS. Cellular Signalling, 75, 109737. https://doi.org/10.1016/j.cellsig.2020.109737
  • Banasr M., Chowdhury G. M., Terwilliger R., Newton S. S., Duman R. S., Behar K. L., Sanacora G. (2010). Glial pathology in an animal model of depression: Reversal of stress-induced cellular, metabolic and behavioral deficits by the glutamate-modulating drug riluzole. Molecular Psychiatry, 15(5), 501–511. https://doi.org/10.1038/mp.2008.106
  • Bansal Y., Kuhad A. (2016). Mitochondrial dysfunction in depression. Current Neuropharmacology, 14(6), 610–618. https://doi.org/10.2174/1570159x14666160229114755
  • Barandouzi Z. A., Starkweather A. R., Henderson W. A., Gyamfi A., Cong X. S. (2020). Altered composition of gut microbiota in depression: A systematic review. Frontiers in Psychiatry, 11, 541. https://doi.org/10.3389/fpsyt.2020.00541
  • Barger S. W., Goodwin M. E., Porter M. M., Beggs M. L. (2007). Glutamate release from activated microglia requires the oxidative burst and lipid peroxidation. Journal of Neurochemistry, 101(5), 1205–1213. https://doi.org/10.1111/j.1471-4159.2007.04487.x
  • Bechtholt-Gompf A. J., Walther H. V., Adams M. A., Carlezon W. A.Jr., Ongur D., Cohen B. M. (2010). Blockade of astrocytic glutamate uptake in rats induces signs of anhedonia and impaired spatial memory. Neuropsychopharmacology, 35(10), 2049–2059. https://doi.org/10.1038/npp.2010.74
  • Belkaid Y., Hand T. W. (2014). Role of the microbiota in immunity and inflammation. Cell, 157(1), 121–141. https://doi.org/10.1016/j.cell.2014.03.011
  • Benmansour S., Deltheil T., Piotrowski J., Nicolas L., Reperant C., Gardier A. M., Frazer A., David D. J. (2008). Influence of brain-derived neurotrophic factor (BDNF) on serotonin neurotransmission in the hippocampus of adult rodents. European Journal of Pharmacology, 587(1-3), 90–98. https://doi.org/10.1016/j.ejphar.2008.03.048
  • Bercik P., Denou E., Collins J., Jackson W., Lu J., Jury J., Deng Y., Blennerhassett P., Macri J., McCoy K. D., Verdu E. F., Collins S. M. (2011). The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice. Gastroenterology, 141(2), 599–609.e3. https://doi.org/10.1053/j.gastro.2011.04.052
  • Berton O., Nestler E. J. (2006). New approaches to antidepressant drug discovery: Beyond monoamines. Nature Reviews Neuroscience, 7(2), 137–151. https://doi.org/10.1038/nrn1846
  • Beurel E., Toups M., Nemeroff C. B. (2020). The bidirectional relationship of depression and inflammation: Double trouble. Neuron, 107(2), 234–256. https://doi.org/10.1016/j.neuron.2020.06.002
  • Bhatt S., Nagappa A. N., Patil C. R. (2020). Role of oxidative stress in depression. Drug Discovery Today, 25(7), 1270–1276. https://doi.org/10.1016/j.drudis.2020.05.001
  • Bjorkholm C., Monteggia L. M. (2016). BDNF-a key transducer of antidepressant effects. Neuropharmacology, 102, 72–79. https://doi.org/10.1016/j.neuropharm.2015.10.034
  • Boehme M., van de Wouw M., Bastiaanssen T. F. S., Olavarría-Ramírez L., Lyons K., Fouhy F., Golubeva A. V., Moloney G. M., Minuto C., Sandhu K. V., Scott K. A., Clarke G., Stanton C., Dinan T. G., Schellekens H., Cryan J. F. (2020). Mid-life microbiota crises: Middle age is associated with pervasive neuroimmune alterations that are reversed by targeting the gut microbiome. Molecular Psychiatry, 25(10), 2567–2583. https://doi.org/10.1038/s41380-019-0425-1
  • Bonaccorso S., Marino V., Biondi M., Grimaldi F., Ippoliti F., Maes M. (2002). Depression induced by treatment with interferon-alpha in patients affected by hepatitis C virus. Journal of Affective Disorders, 72(3), 237–241. https://doi.org/10.1016/s0165-0327(02)00264-1
  • Borrelli L., Aceto S., Agnisola C., De Paolo S., Dipineto L., Stilling R. M., Dinan T. G., Cryan J. F., Menna L. F., Fioretti A. (2016). Probiotic modulation of the microbiota-gut-brain axis and behaviour in zebrafish. Scientific Reports, 6, 30046. https://doi.org/10.1038/srep30046
  • Boycott H. E., Wilkinson J. A., Boyle J. P., Pearson H. A., Peers C. (2008). Differential involvement of TNF alpha in hypoxic suppression of astrocyte glutamate transporters. Glia, 56(9), 998–1004. https://doi.org/10.1002/glia.20673
  • Bravo J. A., Forsythe P., Chew M. V., Escaravage E., Savignac H. M., Dinan T. G., Bienenstock J., Cryan J. F. (2011). Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proceedings of the National Academy of Sciences, 108(38), 16050–16055. https://doi.org/10.1073/pnas.1102999108
  • Brigadski T., Leßmann V. (2020). The physiology of regulated BDNF release. Cell and Tissue Research, 382(1), 15–45. https://doi.org/10.1007/s00441-020-03253-2
  • Brunt V. E., Gioscia-Ryan R. A., Richey J. J., Zigler M. C., Cuevas L. M., Gonzalez A., Vázquez-Baeza Y., Battson M. L., Smithson A. T., Gilley A. D., Ackermann G., Neilson A. P., Weir T., Davy K. P., Knight R., Seals D. R. (2019). Suppression of the gut microbiome ameliorates age-related arterial dysfunction and oxidative stress in mice. The Journal of Physiology, 597(9), 2361–2378. https://doi.org/10.1113/jp277336
  • Bugajski A. J., Gadek-Michalska A., Bugajski J. (2006). The involvement of nitric oxide and prostaglandins in the cholinergic stimulation of hypothalamie-pituitary-adrenal response during crowding stress. Journal of Physiology and Pharmacology, 57(3), 463–477.
  • Byrnes K. R., Stoica B., Loane D. J., Riccio A., Davis M. I., Faden A. I. (2009). Metabotropic glutamate receptor 5 activation inhibits microglial associated inflammation and neurotoxicity. Glia, 57(5), 550–560. https://doi.org/10.1002/glia.20783
  • Cain D. W., Cidlowski J. A. (2017). Immune regulation by glucocorticoids. Nature Reviews Immunology, 17(4), 233–247. https://doi.org/10.1038/nri.2017.1
  • Camkurt M. A., Fındıklı E., İzci F., Kurutaş E. B., Tuman T. C. (2016). Evaluation of malondialdehyde, superoxide dismutase and catalase activity and their diagnostic value in drug naïve, first episode, non-smoker major depression patients and healthy controls. Psychiatry Research, 238, 81–85. https://doi.org/10.1016/j.psychres.2016.01.075
  • Cao C., Liu M., Qu S., Huang R., Qi M., Zhu Z., Zheng J., Chen Z., Wang Z., Han Z., Zhu Y., Huang F., Duan J. A. (2020). Chinese medicine formula Kai-Xin-San ameliorates depression-like behaviours in chronic unpredictable mild stressed mice by regulating gut microbiota-inflammation-stress system. Journal of Ethnopharmacology, 261, 113055. https://doi.org/10.1016/j.jep.2020.113055
  • Cao X., Li L. P., Wang Q., Wu Q., Hu H. H., Zhang M., Fang Y. Y., Zhang J., Li S. J., Xiong W. C., Yan H. C., Gao Y. B., Liu J. H., Li X. W., Sun L. R., Zeng Y. N., Zhu X. H., Gao T. M. (2013). Astrocyte-derived ATP modulates depressive-like behaviors. Nature Medicine, 19(6), 773–777. https://doi.org/10.1038/nm.3162
  • Carlessi A. S., Borba L. A., Zugno A. I., Quevedo J., Réus G. Z. (2021). Gut microbiota-brain axis in depression: The role of neuroinflammation. European Journal of Neuroscience, 53(1), 222–235. https://doi.org/10.1111/ejn.14631
  • Casarotto P., Umemori J., Castren E. (2022). BDNF receptor TrkB as the mediator of the antidepressant drug action. Frontiers in Molecular Neuroscience, 15, 1032224. https://doi.org/10.3389/fnmol.2022.1032224
  • Casarotto P. C., Girych M., Fred S. M., Kovaleva V., Moliner R., Enkavi G., Biojone C., Cannarozzo C., Sahu M. P., Kaurinkoski K., Brunello C. A., Steinzeig A., Winkel F., Patil S., Vestring S., Serchov T., Diniz C., Laukkanen L., Cardon I., Antila H., Rog T., Piepponen T. P., Bramham C. R., Normann C., Lauri S. E., Saarma M., Vattulainen I., Castren E. (2021). Antidepressant drugs act by directly binding to TrkB neurotrophin receptors. Cell, 184(5), 1299–1313.e19. https://doi.org/10.1016/j.cell.2021.01.034
  • Castilho R. F., Ward M. W., Nicholls D. G. (1999). Oxidative stress, mitochondrial function, and acute glutamate excitotoxicity in cultured cerebellar granule cells. Journal of Neurochemistry, 72(4), 1394–1401. https://doi.org/10.1046/j.1471-4159.1999.721394.x
  • Castren E., Monteggia L. M. (2021). Brain-derived neurotrophic factor signaling in depression and antidepressant action. Biological Psychiatry, 90(2), 128–136. https://doi.org/10.1016/j.biopsych.2021.05.008
  • Catena-Dell’Osso M., Rotella F., Dell’Osso A., Fagiolini A., Marazziti D. (2013). Inflammation, serotonin and major depression. Current Drug Targets, 14(5), 571–577. https://doi.org/10.2174/13894501113149990154
  • Caviedes A., Lafourcade C., Soto C., Wyneken U. (2017). BDNF/NF-κB signaling in the neurobiology of depression. Current Pharmaceutical Design, 23(21), 3154–3163. https://doi.org/10.2174/1381612823666170111141915
  • Chacón-Fernández P., Säuberli K., Colzani M., Moreau T., Ghevaert C., Barde Y. A. (2016). Brain-derived neurotrophic factor in megakaryocytes. Journal of Biological Chemistry, 291(19), 9872–9881. https://doi.org/10.1074/jbc.M116.720029
  • Chen C. J., Ou Y. C., Chang C. Y., Pan H. C., Liao S. L., Chen S. Y., Raung S. L., Lai C. Y. (2012). Glutamate released by Japanese encephalitis virus-infected microglia involves TNF-alpha signaling and contributes to neuronal death. Glia, 60(3), 487–501. https://doi.org/10.1002/glia.22282
  • Chen H., Amazit L., Lombès M., Le Menuet D. (2019). Crosstalk between glucocorticoid receptor and early-growth response protein 1 accounts for repression of brain-derived neurotrophic factor transcript 4 expression. Neuroscience, 399, 12–27. https://doi.org/10.1016/j.neuroscience.2018.12.012
  • Chen H., Lombès M., Le Menuet D. (2017). Glucocorticoid receptor represses brain-derived neurotrophic factor expression in neuron-like cells. Molecular Brain, 10(1), 12. https://doi.org/10.1186/s13041-017-0295-x
  • Chen J., Li J., Qiao H., Hu R., Li C. (2023). Disruption of IDO signaling pathway alleviates chronic unpredictable mild stress-induced depression-like behaviors and tumor progression in mice with breast cancer. Cytokine, 162, 156115. https://doi.org/10.1016/j.cyto.2022.156115
  • Chen S. D., Wu C. L., Hwang W. C., Yang D. I. (2017). More insight into BDNF against neurodegeneration: Anti-apoptosis, anti-oxidation, and suppression of autophagy. International Journal of Molecular Sciences, 18(3), 545. https://doi.org/10.3390/ijms18030545
  • Chen Z., Zhong C. (2014). Oxidative stress in Alzheimer’s disease. Neuroscience Bulletin, 30(2), 271–281. https://doi.org/10.1007/s12264-013-1423-y
  • Cho Y., Hwang H., Rahman M. A., Chung C., Rhim H. (2020). Elevated O-GlcNAcylation induces an antidepressant-like phenotype and decreased inhibitory transmission in medial prefrontal cortex. Scientific Reports, 10(1), 6924. https://doi.org/10.1038/s41598-020-63819-6
  • Cipriani A., Furukawa T. A., Salanti G., Chaimani A., Atkinson L. Z., Ogawa Y., Leucht S., Ruhe H. G., Turner E. H., Higgins J. P. T., Egger M., Takeshima N., Hayasaka Y., Imai H., Shinohara K., Tajika A., Ioannidis J. P. A., Geddes J. R. (2018). Comparative efficacy and acceptability of 21 antidepressant drugs for the acute treatment of adults with major depressive disorder: A systematic review and network meta-analysis. The Lancet, 391(10128), 1357–1366. https://doi.org/10.1016/s0140-6736(17)32802-7
  • Clark I. A., Vissel B. (2016). Excess cerebral TNF causing glutamate excitotoxicity rationalizes treatment of neurodegenerative diseases and neurogenic pain by anti-TNF agents. Journal of Neuroinflammation, 13(1), 236. https://doi.org/10.1186/s12974-016-0708-2
  • Cobley J. N., Fiorello M. L., Bailey D. M. (2018). 13 reasons why the brain is susceptible to oxidative stress. Redox Biology, 15, 490–503. https://doi.org/10.1016/j.redox.2018.01.008
  • Comasco E., Schijven D., de Maeyer H., Vrettou M., Nylander I., Sundström-Poromaa I., Olivier J. D. A. (2019). Constitutive serotonin transporter reduction resembles maternal separation with regard to stress-related gene expression. ACS Chemical Neuroscience, 10(7), 3132–3142. https://doi.org/10.1021/acschemneuro.8b00595
  • Connor T. J., Starr N., O’Sullivan J. B., Harkin A. (2008). Induction of indolamine 2,3-dioxygenase and kynurenine 3-monooxygenase in rat brain following a systemic inflammatory challenge: A role for IFN-gamma? Neuroscience Letters, 441(1), 29–34. https://doi.org/10.1016/j.neulet.2008.06.007
  • Correia A. S., Vale N. (2022). Tryptophan metabolism in depression: A narrative review with a focus on serotonin and kynurenine pathways. International Journal of Molecular Sciences, 23(15), 8493. https://doi.org/10.3390/ijms23158493
  • Cui W., Mizukami H., Yanagisawa M., Aida T., Nomura M., Isomura Y., Takayanagi R., Ozawa K., Tanaka K., Aizawa H. (2014). Glial dysfunction in the mouse habenula causes depressive-like behaviors and sleep disturbance. The Journal of Neuroscience, 34(49), 16273–16285. https://doi.org/10.1523/JNEUROSCI.1465-14.2014
  • Culmsee C., Michels S., Scheu S., Arolt V., Dannlowski U., Alferink J. (2018). Mitochondria, microglia, and the immune system-how are they linked in affective disorders? Frontiers in Psychiatry, 9, 739. https://doi.org/10.3389/fpsyt.2018.00739
  • Cuong T. T., Yang C. S., Yuk J. M., Lee H. M., Ko S. R., Cho B. G., Jo E. K. (2009). Glucocorticoid receptor agonist compound K regulates dectin-1-dependent inflammatory signaling through inhibition of reactive oxygen species. Life Sciences, 85(17-18), 625–633. https://doi.org/10.1016/j.lfs.2009.08.014
  • Czéh B., Fuchs E., Wiborg O., Simon M. (2016). Animal models of major depression and their clinical implications. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 64, 293–310. https://doi.org/10.1016/j.pnpbp.2015.04.004
  • Dallas M., Boycott H. E., Atkinson L., Miller A., Boyle J. P., Pearson H. A., Peers C. (2007). Hypoxia suppresses glutamate transport in astrocytes. The Journal of Neuroscience, 27(15), 3946–3955. https://doi.org/10.1523/JNEUROSCI.5030-06.2007
  • Damian F. S., Ana M. H., Jamileh S. (2021). Global prevalence and burden of depressive and anxiety disorders in 204 countries and territories in 2020 due to the COVID-19 pandemic. The Lancet, 398(10312), 1700–1712. https://doi.org/10.1016/s0140-6736(21)02143-7
  • Daws L. C., Munn J. L., Valdez M. F., Frosto-Burke T., Hensler J. G. (2007). Serotonin transporter function, but not expression, is dependent on brain-derived neurotrophic factor (BDNF): In vivo studies in BDNF-deficient mice. Journal of Neurochemistry, 101(3), 641–651. https://doi.org/10.1111/j.1471-4159.2006.04392.x
  • de Foubert G., O’Neill M. J., Zetterström T. S. (2007). Acute onset by 5-HT(6)-receptor activation on rat brain brain-derived neurotrophic factor and activity-regulated cytoskeletal-associated protein mRNA expression. Neuroscience, 147(3), 778–785. https://doi.org/10.1016/j.neuroscience.2007.04.045
  • Deltheil T., Guiard B. P., Cerdan J., David D. J., Tanaka K. F., Repérant C., Guilloux J. P., Coudoré F., Hen R., Gardier A. M. (2008). Behavioral and serotonergic consequences of decreasing or increasing hippocampus brain-derived neurotrophic factor protein levels in mice. Neuropharmacology, 55(6), 1006–1014. https://doi.org/10.1016/j.neuropharm.2008.08.001
  • Deng X. Y., Xue J. S., Li H. Y., Ma Z. Q., Fu Q., Qu R., Ma S. P. (2015). Geraniol produces antidepressant-like effects in a chronic unpredictable mild stress mice model. Physiology & Behavior, 152(Pt A), 264–271. https://doi.org/10.1016/j.physbeh.2015.10.008
  • Deng Y., Zhou M., Wang J., Yao J., Yu J., Liu W., Wu L., Wang J., Gao R. (2021). Involvement of the microbiota-gut-brain axis in chronic restraint stress: Disturbances of the kynurenine metabolic pathway in both the gut and brain. Gut Microbes, 13(1), 1–16. https://doi.org/10.1080/19490976.2020.1869501
  • de Oliveira L. G., Angelo Y. S., Iglesias A. H., Peron J. P. S. (2021). Unraveling the link between mitochondrial dynamics and neuroinflammation. Frontiers in Immunology, 12, 624919. https://doi.org/10.3389/fimmu.2021.624919
  • De Palma G., Blennerhassett P., Lu J., Deng Y., Park A. J., Green W., Denou E., Silva M. A., Santacruz A., Sanz Y., Surette M. G., Verdu E. F., Collins S. M., Bercik P. (2015). Microbiota and host determinants of behavioural phenotype in maternally separated mice. Nature Communications, 6, 7735. https://doi.org/10.1038/ncomms8735
  • Desbonnet L., Garrett L., Clarke G., Bienenstock J., Dinan T. G. (2008). The probiotic Bifidobacteria infantis: An assessment of potential antidepressant properties in the rat. Journal of Psychiatric Research, 43(2), 164–174. https://doi.org/10.1016/j.jpsychires.2008.03.009
  • Ding H., Chen J., Su M., Lin Z., Zhan H., Yang F., Li W., Xie J., Huang Y., Liu X., Liu B., Zhou X. (2020). BDNF promotes activation of astrocytes and microglia contributing to neuroinflammation and mechanical allodynia in cyclophosphamide-induced cystitis. Journal of Neuroinflammation, 17(1), 19. https://doi.org/10.1186/s12974-020-1704-0
  • Ding X. F., Li Y. H., Chen J. X., Sun L. J., Jiao H. Y., Wang X. X., Zhou Y. (2017). Involvement of the glutamate/glutamine cycle and glutamate transporter GLT-1 in antidepressant-like effects of Xiao Yao san on chronically stressed mice. BMC Complementary and Alternative Medicine, 17(1), 326. https://doi.org/10.1186/s12906-017-1830-0
  • Ding Y., Bu F., Chen T., Shi G., Yuan X., Feng Z., Duan Z., Wang R., Zhang S., Wang Q., Zhou J., Chen Y. (2021). A next-generation probiotic: Akkermansia muciniphila ameliorates chronic stress-induced depressive-like behavior in mice by regulating gut microbiota and metabolites. Applied Microbiology and Biotechnology, 105(21-22), 8411–8426. https://doi.org/10.1007/s00253-021-11622-2
  • Dionisie V., Filip G. A., Manea M. C., Manea M., Riga S. (2021). The anti-inflammatory role of SSRI and SNRI in the treatment of depression: A review of human and rodent research studies. Inflammopharmacology, 29(1), 75–90. https://doi.org/10.1007/s10787-020-00777-5
  • Du J., McEwen B., Manji H. K. (2009). Glucocorticoid receptors modulate mitochondrial function: A novel mechanism for neuroprotection. Communicative & Integrative Biology, 2(4), 350–352. https://doi.org/10.4161/cib.2.4.8554
  • Duda W., Kubera M., Kreiner G., Curzytek K., Detka J., Glombik K., Slusarczyk J., Basta-Kaim A., Budziszewska B., Lason W., Regulska M., Leskiewicz M., Roman A., Zelek-Molik A., Nalepa I. (2017). Suppression of pro-inflammatory cytokine expression and lack of anti-depressant-like effect of fluoxetine in lipopolysaccharide-treated old female mice. International Immunopharmacology, 48, 35–42. https://doi.org/10.1016/j.intimp.2017.04.021
  • El Aidy S., Ramsteijn A. S., Dini-Andreote F., van Eijk R., Houwing D. J., Salles J. F., Olivier J. D. A. (2017). Serotonin transporter genotype modulates the gut microbiota composition in young rats, an effect augmented by early life stress. Frontiers in Cellular Neuroscience, 11, 222. https://doi.org/10.3389/fncel.2017.00222
  • Enache D., Pariante C. M., Mondelli V. (2019). Markers of central inflammation in major depressive disorder: A systematic review and meta-analysis of studies examining cerebrospinal fluid, positron emission tomography and post-mortem brain tissue. Brain, Behavior, and Immunity, 81, 24–40. https://doi.org/10.1016/j.bbi.2019.06.015
  • Eskelund A., Li Y., Budac D. P., Müller H. K., Gulinello M., Sanchez C., Wegener G. (2017). Drugs with antidepressant properties affect tryptophan metabolites differently in rodent models with depression-like behavior. Journal of Neurochemistry, 142(1), 118–131. https://doi.org/10.1111/jnc.14043
  • Espinoza M. B., Aedo J. E., Zuloaga R., Valenzuela C., Molina A., Valdés J. A. (2017). Cortisol induces reactive oxygen species through a membrane glucocorticoid receptor in rainbow trout myotubes. Journal of Cellular Biochemistry, 118(4), 718–725. https://doi.org/10.1002/jcb.25676
  • Evanson N. K., Herman J. P. ( 2015a). Metabotropic glutamate receptor-mediated signaling dampens the HPA axis response to restraint stress. Physiology & Behavior, 150, 2–7. https://doi.org/10.1016/j.physbeh.2015.02.027
  • Evanson N. K., Herman J. P. ( 2015b). Role of paraventricular nucleus glutamate signaling in regulation of HPA axis stress responses. Interdiscip Inf Sci, 21(3), 253–260. https://doi.org/10.4036/iis.2015.B.10
  • Fan J., Guo F., Mo R., Chen L. Y., Mo J., Lu C. L., Ren J., Zhong Q., Kuang X., Wen Y., Gu T. T., Liu J., Li S., Fang Y., Zhao C., Gao T. M., Cao X. (2023). O-GlcNAc transferase in astrocytes modulates depression-related stress susceptibility through glutamatergic synaptic transmission. Journal of Clinical Investigation, 133(7). https://doi.org/10.1172/jci160016
  • Fan J. F., Tang Z. H., Wang S. Y., Lei S., Zhang B., Tian S. W. (2021). Ketamine enhances novel object recognition memory reconsolidation via the BDNF/TrkB pathway in mice. Physiology & Behavior, 242, 113626. https://doi.org/10.1016/j.physbeh.2021.113626
  • Freimer D., Yang T. T., Ho T. C., Tymofiyeva O., Leung C. (2022). The gut microbiota, HPA axis, and brain in adolescent-onset depression: Probiotics as a novel treatment. Brain, Behavior, & Immunity - Health, 26, 100541. https://doi.org/10.1016/j.bbih.2022.100541
  • Fu X., Zunich S. M., O’Connor J. C., Kavelaars A., Dantzer R., Kelley K. W. (2010). Central administration of lipopolysaccharide induces depressive-like behavior in vivo and activates brain indoleamine 2,3 dioxygenase in murine organotypic hippocampal slice cultures. Journal of Neuroinflammation, 7(1), 43. https://doi.org/10.1186/1742-2094-7-43
  • Fujimura H., Altar C. A., Chen R., Nakamura T., Nakahashi T., Kambayashi J., Sun B., Tandon N. N. (2002). Brain-derived neurotrophic factor is stored in human platelets and released by agonist stimulation. Thrombosis and Haemostasis, 87(4), 728–734. https://doi.org/10.1055/s-0037-1613072
  • Fukumoto K., Fogaça M. V., Liu R. J., Duman C., Kato T., Li X. Y., Duman R. S. (2019). Activity-dependent brain-derived neurotrophic factor signaling is required for the antidepressant actions of (2R,6R)-hydroxynorketamine. Proceedings of the National Academy of Sciences, 116(1), 297–302. https://doi.org/10.1073/pnas.1814709116
  • Gadek-Michalska A., Bugajski J. (2005). Nitric oxide mediates the interleukin-1beta- and nicotine-induced hypothalamic-pituitary-adrenocortical response during social stress. Journal of Physiology and Pharmacology, 56(3), 491–503.
  • Gaidin S. G., Turovskaya M. V., Gavrish M. S., Babaev A. A., Mal’tseva V. N., Blinova E. V., Turovsky E. A. (2020). The selective BDNF overexpression in neurons protects neuroglial networks against OGD and glutamate-induced excitotoxicity. International Journal of Neuroscience, 130(4), 363–383. https://doi.org/10.1080/00207454.2019.1691205
  • Gao K., Farzi A., Ke X., Yu Y., Chen C., Chen S., Yu T., Wang H., Li Y. (2022). Oral administration of Lactococcus lactis WHH2078 alleviates depressive and anxiety symptoms in mice with induced chronic stress. Food & Function, 13(2), 957–969. https://doi.org/10.1039/d1fo03723d
  • García-García A. L., Venzala E., Elizalde N., Ramírez M. J., Urbiola A., Del Rio J., Lanfumey L., Tordera R. M. (2013). Regulation of serotonin (5-HT) function by a VGLUT1 dependent glutamate pathway. Neuropharmacology, 70, 190–199. https://doi.org/10.1016/j.neuropharm.2012.11.005
  • Garcia-Garcia M. L., Tovilla-Zarate C. A., Villar-Soto M., Juarez-Rojop I. E., Gonzalez-Castro T. B., Genis-Mendoza A. D., Ramos-Mendez M. A., Lopez-Narvaez M. L., Saucedo-Osti A. S., Ruiz-Quinones J. A., Martinez-Magana J. J. (2022). Fluoxetine modulates the pro-inflammatory process of IL-6, IL-1beta and TNF-alpha levels in individuals with depression: A systematic review and meta-analysis. Psychiatry Research, 307, 114317. https://doi.org/10.1016/j.psychres.2021.114317
  • Gasull-Camós J., Tarrés-Gatius M., Artigas F., Castañé A. (2017). Glial GLT-1 blockade in infralimbic cortex as a new strategy to evoke rapid antidepressant-like effects in rats. Translational Psychiatry, 7(2), e1038. https://doi.org/10.1038/tp.2017.7
  • Getachew B., Aubee J. I., Schottenfeld R. S., Csoka A. B., Thompson K. M., Tizabi Y. (2018). Ketamine interactions with gut-microbiota in rats: Relevance to its antidepressant and anti-inflammatory properties. BMC Microbiology, 18(1), 222. https://doi.org/10.1186/s12866-018-1373-7
  • Gheorghe C. E., Martin J. A., Manriquez F. V., Dinan T. G., Cryan J. F., Clarke G. (2019). Focus on the essentials: Tryptophan metabolism and the microbiome-gut-brain axis. Current Opinion in Pharmacology, 48, 137–145. https://doi.org/10.1016/j.coph.2019.08.004
  • Giridharan V. V., Reus G. Z., Selvaraj S., Scaini G., Barichello T., Quevedo J. (2019). Maternal deprivation increases microglial activation and neuroinflammatory markers in the prefrontal cortex and hippocampus of infant rats. Journal of Psychiatric Research, 115, 13–20. https://doi.org/10.1016/j.jpsychires.2019.05.001
  • Gritti D., Delvecchio G., Ferro A., Bressi C., Brambilla P. (2021). Neuroinflammation in major depressive disorder: A review of PET imaging studies examining the 18-kDa translocator protein. Journal of Affective Disorders, 292, 642–651. https://doi.org/10.1016/j.jad.2021.06.001
  • Guan X., Pang T. (2023). Fast-onset antidepressant targeting the nNOS-SERT interaction in the DRN. Chinese Journal of Natural Medicines, 21(1), 1–2. https://doi.org/10.1016/s1875-5364(23)60380-2.
  • Guan Z., Fang J. (2006). Peripheral immune activation by lipopolysaccharide decreases neurotrophins in the cortex and hippocampus in rats. Brain, Behavior, and Immunity, 20(1), 64–71. https://doi.org/10.1016/j.bbi.2005.04.005
  • Guo J. D., Rainnie D. G. (2010). Presynaptic 5-HT(1B) receptor-mediated serotonergic inhibition of glutamate transmission in the bed nucleus of the stria terminalis. Neuroscience, 165(4), 1390–1401. https://doi.org/10.1016/j.neuroscience.2009.11.071
  • Guo L. T., Wang S. Q., Su J., Xu L. X., Ji Z. Y., Zhang R. Y., Zhao Q. W., Ma Z. Q., Deng X. Y., Ma S. P. (2019). Baicalin ameliorates neuroinflammation-induced depressive-like behavior through inhibition of toll-like receptor 4 expression via the PI3K/AKT/FoxO1 pathway. Journal of Neuroinflammation, 16(1), 95. https://doi.org/10.1186/s12974-019-1474-8
  • Guo Y., Xie J. P., Deng K., Li X., Yuan Y., Xuan Q., Xie J., He X. M., Wang Q., Li J. J., Luo H. R. (2019). Prophylactic effects of Bifidobacterium adolescentis on anxiety and depression-like phenotypes after chronic stress: A role of the gut microbiota-inflammation axis. Frontiers in Behavioral Neuroscience, 13, 126. https://doi.org/10.3389/fnbeh.2019.00126
  • Haroon E., Miller A. H. (2017). Inflammation effects on brain glutamate in depression: Mechanistic considerations and treatment implications. Current Topics in Behavioral Neurosciences, 31, 173–198. https://doi.org/10.1007/7854_2016_40
  • Hashimoto K., Sawa A., Iyo M. (2007). Increased levels of glutamate in brains from patients with mood disorders. Biological Psychiatry, 62(11), 1310–1316. https://doi.org/10.1016/j.biopsych.2007.03.017
  • He H., Xie X., Zhang J., Mo L., Kang X., Zhang Y., Wang L., Hu N., Xie L., Peng C., You Z. (2023). Patchouli alcohol ameliorates depression-like behaviors through inhibiting NLRP3-mediated neuroinflammation in male stress-exposed mice. Journal of Affective Disorders, 326, 120–131. https://doi.org/10.1016/j.jad.2023.01.065
  • Herken H., Gurel A., Selek S., Armutcu F., Ozen M. E., Bulut M., Kap O., Yumru M., Savas H. A., Akyol O. (2007). Adenosine deaminase, nitric oxide, superoxide dismutase, and xanthine oxidase in patients with major depression: Impact of antidepressant treatment. Archives of Medical Research, 38(2), 247–252. https://doi.org/10.1016/j.arcmed.2006.10.005
  • Hertz L., Zielke H. R. (2004). Astrocytic control of glutamatergic activity: Astrocytes as stars of the show. Trends in Neurosciences, 27(12), 735–743. https://doi.org/10.1016/j.tins.2004.10.008
  • Hoban A. E., Moloney R. D., Golubeva A. V., McVey Neufeld K. A., O’Sullivan O., Patterson E., Stanton C., Dinan T. G., Clarke G., Cryan J. F. (2016). Behavioural and neurochemical consequences of chronic gut microbiota depletion during adulthood in the rat. Neuroscience, 339, 463–477. https://doi.org/10.1016/j.neuroscience.2016.10.003
  • Hollis F., Pope B. S., Gorman-Sandler E., Wood S. K. (2022). Neuroinflammation and mitochondrial dysfunction link social stress to depression. Curr Top Behav Neurosci, 54, 59–93. https://doi.org/10.1007/7854_2021_300
  • Hooper L. V., Littman D. R., Macpherson A. J. (2012). Interactions between the microbiota and the immune system. Science, 336(6086), 1268–1273. https://doi.org/10.1126/science.1223490
  • Hu S., Sheng W. S., Ehrlich L. C., Peterson P. K., Chao C. C. (2000). Cytokine effects on glutamate uptake by human astrocytes. Neuroimmunomodulation, 7(3), 153–159. https://doi.org/10.1159/000026433
  • Huang N., Hua D., Zhan G., Li S., Zhu B., Jiang R., Yang L., Bi J., Xu H., Hashimoto K., Luo A., Yang C. (2019). Role of Actinobacteria and Coriobacteriia in the antidepressant effects of ketamine in an inflammation model of depression. Pharmacology Biochemistry and Behavior, 176, 93–100. https://doi.org/10.1016/j.pbb.2018.12.001
  • Huang Y., Wang Y., Wang H., Liu Z., Yu X., Yan J., Yu Y., Kou C., Xu X., Lu J., Wang Z., He S., Xu Y., He Y., Li T., Guo W., Tian H., Xu G., Xu X., Ma Y., Wang L., Wang L., Yan Y., Wang B., Xiao S., Zhou L., Li L., Tan L., Zhang T., Ma C., Li Q., Ding H., Geng H., Jia F., Shi J., Wang S., Zhang N., Du X., Du X., Wu Y. (2019). Prevalence of mental disorders in China: A cross-sectional epidemiological study. The Lancet Psychiatry, 6(3), 211–224. https://doi.org/10.1016/S2215-0366(18)30511-X
  • Iatsenko I., Boquete J. P., Lemaitre B. (2018). Microbiota-derived lactate activates production of reactive oxygen species by the Intestinal NADPH oxidase NOX and shortens Drosophila lifespan. Immunity, 49(5), 929–942.e5. https://doi.org/10.1016/j.immuni.2018.09.017
  • Inserra A., Mastronardi C. A., Rogers G., Licinio J., Wong M. L. (2019). Neuroimmunomodulation in major depressive disorder: Focus on caspase 1, inducible nitric oxide synthase, and interferon-gamma. Molecular Neurobiology, 56(6), 4288–4305. https://doi.org/10.1007/s12035-018-1359-3
  • Inserra A., Rogers G. B., Licinio J., Wong M. L. (2018). The Microbiota-inflammasome hypothesis of major depression. Bioessays, 40(9), e1800027. https://doi.org/10.1002/bies.201800027
  • Jean Y. Y., Lercher L. D., Dreyfus C. F. (2008). Glutamate elicits release of BDNF from basal forebrain astrocytes in a process dependent on metabotropic receptors and the PLC pathway. Neuron Glia Biology, 4(1), 35–42. https://doi.org/10.1017/S1740925X09000052
  • John C. S., Smith K. L., Van’t Veer A., Gompf H. S., Carlezon W. A.Jr., Cohen B. M., Öngür D., Bechtholt-Gompf A. J. (2012). Blockade of astrocytic glutamate uptake in the prefrontal cortex induces anhedonia. Neuropsychopharmacology, 37(11), 2467–2475. https://doi.org/10.1038/npp.2012.105
  • John C. S., Sypek E. I., Carlezon W. A., Cohen B. M., Öngür D., Bechtholt A. J. (2015). Blockade of the GLT-1 transporter in the central nucleus of the amygdala induces both anxiety and depressive-like symptoms. Neuropsychopharmacology, 40(7), 1700–1708. https://doi.org/10.1038/npp.2015.16
  • Johnson F. K., Kaffman A. (2018). Early life stress perturbs the function of microglia in the developing rodent brain: New insights and future challenges. Brain, Behavior, and Immunity, 69, 18–27. https://doi.org/10.1016/j.bbi.2017.06.008
  • Jones R. M., Neish A. S. (2017). Redox signaling mediated by the gut microbiota. Free Radical Biology and Medicine, 105, 41–47. https://doi.org/10.1016/j.freeradbiomed.2016.10.495
  • Juszczyk G., Mikulska J., Kasperek K., Pietrzak D., Mrozek W., Herbet M. (2021). Chronic stress and oxidative stress as common factors of the pathogenesis of depression and Alzheimer’s disease: The role of antioxidants in prevention and treatment. Antioxidants, 10(9), 1439. https://doi.org/10.3390/antiox10091439
  • Kapczinski F., Frey B. N., Andreazza A. C., Kauer-Sant’Anna M., Cunha A. B., Post R. M. (2008). Increased oxidative stress as a mechanism for decreased BDNF levels in acute manic episodes. Revista Brasileira de Psiquiatria, 30(3), 243–245. https://doi.org/10.1590/s1516-44462008000300011
  • Karege F., Bondolfi G., Gervasoni N., Schwald M., Aubry J. M., Bertschy G. (2005). Low brain-derived neurotrophic factor (BDNF) levels in serum of depressed patients probably results from lowered platelet BDNF release unrelated to platelet reactivity. Biological Psychiatry, 57(9), 1068–1072. https://doi.org/10.1016/j.biopsych.2005.01.008
  • Kawashima H., Numakawa T., Kumamaru E., Adachi N., Mizuno H., Ninomiya M., Kunugi H., Hashido K. (2010). Glucocorticoid attenuates brain-derived neurotrophic factor-dependent upregulation of glutamate receptors via the suppression of microRNA-132 expression. Neuroscience, 165(4), 1301–1311. https://doi.org/10.1016/j.neuroscience.2009.11.057
  • Keefe B. (2007). Interferon-induced depression in hepatitis C: An update. Current Psychiatry Reports, 9(3), 255–261. https://doi.org/10.1007/s11920-007-0028-4
  • Kelly J. R., Borre Y., O’Brien C., Patterson E., El Aidy S., Deane J., Kennedy P. J., Beers S., Scott K., Moloney G., Hoban A. E., Scott L., Fitzgerald P., Ross P., Stanton C., Clarke G., Cryan J. F., Dinan T. G. (2016). Transferring the blues: Depression-associated gut microbiota induces neurobehavioural changes in the rat. Journal of Psychiatric Research, 82, 109–118. https://doi.org/10.1016/j.jpsychires.2016.07.019
  • Khanzode S. D., Dakhale G. N., Khanzode S. S., Saoji A., Palasodkar R. (2003). Oxidative damage and major depression: The potential antioxidant action of selective serotonin re-uptake inhibitors. Redox Report, 8(6), 365–370. https://doi.org/10.1179/135100003225003393
  • Kingwell K. (2022). A faster route to antidepressant activity. Nature Reviews Drug Discovery, 21(12), 877. https://doi.org/10.1038/d41573-022-00188-x
  • Kinlein S. A., Wallace N. K., Savenkova M. I., Karatsoreos I. N. (2022). Chronic hypothalamic-pituitary-adrenal axis disruption alters glutamate homeostasis and neural responses to stress in male C57Bl6/N mice. Neurobiology of Stress, 19, 100466. https://doi.org/10.1016/j.ynstr.2022.100466
  • Kokkinopoulou I., Moutsatsou P. (2021). Mitochondrial glucocorticoid receptors and their actions. International Journal of Molecular Sciences, 22(11), 6054. https://doi.org/10.3390/ijms22116054
  • Kong L. Z., Lai J. B., Hu S. H. (2022). China Initiates depression screening in children and adolescents. The Lancet Psychiatry, 9(2), 107–108. https://doi.org/10.1016/S2215-0366(21)00479-X
  • Kozisek M. E., Middlemas D., Bylund D. B. (2008). Brain-derived neurotrophic factor and its receptor tropomyosin-related kinase B in the mechanism of action of antidepressant therapies. Pharmacology & Therapeutics, 117(1), 30–51. https://doi.org/10.1016/j.pharmthera.2007.07.001
  • Krautkramer K. A., Fan J., Bäckhed F. (2021). Gut microbial metabolites as multi-kingdom intermediates. Nature Reviews Microbiology, 19(2), 77–94. https://doi.org/10.1038/s41579-020-0438-4
  • Krishnan V., Nestler E. J. (2008). The molecular neurobiology of depression. Nature, 455(7215), 894–902. https://doi.org/10.1038/nature07455
  • Kume T., Nishikawa H., Tomioka H., Katsuki H., Akaike A., Kaneko S., Maeda T., Kihara T., Shimohama S. (2000). p75-mediated neuroprotection by NGF against glutamate cytotoxicity in cortical cultures. Brain Research, 852(2), 279–289. https://doi.org/10.1016/s0006-8993(99)02226-x
  • Kundu P., Blacher E., Elinav E., Pettersson S. (2017). Our gut microbiome: The evolving inner self. Cell, 171(7), 1481–1493. https://doi.org/10.1016/j.cell.2017.11.024
  • Lafon-Cazal M., Pietri S., Culcasi M., Bockaert J. (1993). NMDA-dependent superoxide production and neurotoxicity. Nature, 364(6437), 535–537. https://doi.org/10.1038/364535a0
  • Lambert W. M., Xu C. F., Neubert T. A., Chao M. V., Garabedian M. J., Jeanneteau F. D. (2013). Brain-derived neurotrophic factor signaling rewrites the glucocorticoid transcriptome via glucocorticoid receptor phosphorylation. Molecular and Cellular Biology, 33(18), 3700–3714. https://doi.org/10.1128/mcb.00150-13
  • Lau A., Tymianski M. (2010). Glutamate receptors, neurotoxicity and neurodegeneration. Pflügers Archiv - European Journal of Physiology, 460(2), 525–542. https://doi.org/10.1007/s00424-010-0809-1
  • Lawson M. A., Parrott J. M., McCusker R. H., Dantzer R., Kelley K. W., O’Connor J. C. (2013). Intracerebroventricular administration of lipopolysaccharide induces indoleamine-2,3-dioxygenase-dependent depression-like behaviors. Journal of Neuroinflammation, 10(1), 87. https://doi.org/10.1186/1742-2094-10-87
  • Lee H. Y., Kim Y. K. (2008). Plasma brain-derived neurotrophic factor as a peripheral marker for the action mechanism of antidepressants. Neuropsychobiology, 57(4), 194–199. https://doi.org/10.1159/000149817
  • Lepack A. E., Fuchikami M., Dwyer J. M., Banasr M., Duman R. S. (2014). BDNF release is required for the behavioral actions of ketamine. International Journal of Neuropsychopharmacology, 18(1), pyu033–pyu033. https://doi.org/10.1093/ijnp/pyu033.
  • Li H. Y., Zhu M. Z., Yuan X. R., Guo Z. X., Pan Y. D., Li Y. Q., Zhu X. H. (2023). A thalamic-primary auditory cortex circuit mediates resilience to stress. Cell, 186(7), 1352–1368.e18. https://doi.org/10.1016/j.cell.2023.02.036
  • Li N., Wang Q., Wang Y., Sun A., Lin Y., Jin Y., Li X. (2019). Fecal microbiota transplantation from chronic unpredictable mild stress mice donors affects anxiety-like and depression-like behavior in recipient mice via the gut microbiota-inflammation-brain axis. Stress, 22(5), 592–602. https://doi.org/10.1080/10253890.2019.1617267
  • Li W., Ali T., Zheng C., He K., Liu Z., Shah F. A., Li N., Yu Z. J., Li S. (2022). Anti-depressive-like behaviors of APN KO mice involve Trkb/BDNF signaling related neuroinflammatory changes. Molecular Psychiatry, 27(2), 1047–1058. https://doi.org/10.1038/s41380-021-01327-3
  • Li Z. R., Han Y. S., Liu Z., Zhao H. Q., Liu J., Yang H., Wang Y. H. (2021). GR/NF-κB signaling pathway regulates hippocampal inflammatory responses in diabetic rats with chronic unpredictable mild stress. European Journal of Pharmacology, 895, 173861. https://doi.org/10.1016/j.ejphar.2021.173861
  • Lin C. C., Huang T. L. (2020). Brain-derived neurotrophic factor and mental disorders. Biomedical Journal, 43(2), 134–142. https://doi.org/10.1016/j.bj.2020.01.001
  • Lin S., Huang L., Luo Z. C., Li X., Jin S. Y., Du Z. J., Wu D. Y., Xiong W. C., Huang L., Luo Z. Y., Song Y. L., Wang Q., Liu X. W., Ma R. J., Wang M. L., Ren C. R., Yang J. M., Gao T. M. (2022). The ATP level in the medial prefrontal cortex regulates depressive-like behavior via the medial prefrontal cortex-lateral habenula pathway. Biological Psychiatry, 92(3), 179–192. https://doi.org/10.1016/j.biopsych.2022.02.014
  • Lindqvist D., Dhabhar F. S., James S. J., Hough C. M., Jain F. A., Bersani F. S., Reus V. I., Verhoeven J. E., Epel E. S., Mahan L., Rosser R., Wolkowitz O. M., Mellon S. H. (2017). Oxidative stress, inflammation and treatment response in major depression. Psychoneuroendocrinology, 76, 197–205. https://doi.org/10.1016/j.psyneuen.2016.11.031
  • Liu S., Xu S., Wang Z., Guo Y., Pan W., Shen Z. (2018). Anti-depressant-like effect of sinomenine on chronic unpredictable mild stress-induced depression in a mouse model. Medical Science Monitor, 24, 7646–7653. https://doi.org/10.12659/MSM.908422
  • Liu T., Zhong S., Liao X., Chen J., He T., Lai S., Jia Y. (2015). A meta-analysis of oxidative stress markers in depression. PLoS One, 10(10), e0138904. https://doi.org/10.1371/journal.pone.0138904.
  • Liu W. X., Wang J., Xie Z. M., Xu N., Zhang G. F., Jia M., Zhou Z. Q., Hashimoto K., Yang J. J. (2016). Regulation of glutamate transporter 1 via BDNF-TrkB signaling plays a role in the anti-apoptotic and antidepressant effects of ketamine in chronic unpredictable stress model of depression. Psychopharmacology, 233(3), 405–415. https://doi.org/10.1007/s00213-015-4128-2
  • Liu Y., Ding X. F., Wang X. X., Zou X. J., Li X. J., Liu Y. Y., Li J., Qian X. Y., Chen J. X. (2019). Xiaoyaosan exerts antidepressant-like effects by regulating the functions of astrocytes and EAATs in the prefrontal cortex of mice. BMC Complementary and Alternative Medicine, 19(1), 215. https://doi.org/10.1186/s12906-019-2613-6
  • Lu X., Qi C., Zheng J., Sun M., Jin L., Sun J. (2022). The antidepressant effect of deoiled sunflower seeds on chronic unpredictable mild stress in mice through regulation of microbiota-gut-brain axis. Frontiers in Nutrition, 9, 908297. https://doi.org/10.3389/fnut.2022.908297
  • Lukic I., Getselter D., Ziv O., Oron O., Reuveni E., Koren O., Elliott E. (2019). Antidepressants affect gut microbiota and Ruminococcus flavefaciens is able to abolish their effects on depressive-like behavior. Translational Psychiatry, 9(1), 133. https://doi.org/10.1038/s41398-019-0466-x
  • Lyu S., Guo Y., Zhang L., Tang G., Li R., Yang J., Gao S., Li W., Liu J. (2021). Downregulation of astroglial glutamate transporter GLT-1 in the lateral habenula is associated with depressive-like behaviors in a rat model of Parkinson’s disease. Neuropharmacology, 196, 108691. https://doi.org/10.1016/j.neuropharm.2021.108691
  • Ma H., Xu J., Li R., McIntyre R. S., Teopiz K. M., Cao B., Yang F. (2022). The impact of cognitive behavioral therapy on peripheral interleukin-6 levels in depression: A systematic review and meta-analysis. Frontiers in Psychiatry, 13, 844176. https://doi.org/10.3389/fpsyt.2022.844176
  • Madeira C., Vargas-Lopes C., Brandao C. O., Reis T., Laks J., Panizzutti R., Ferreira S. T. (2018). Elevated glutamate and glutamine levels in the cerebrospinal fluid of patients with probable Alzheimer’s disease and depression. Frontiers in Psychiatry, 9, 561. https://doi.org/10.3389/fpsyt.2018.00561
  • Malhi G. S., Mann J. J. (2018). Depression. The Lancet, 392(10161), 2299–2312. https://doi.org/10.1016/S0140-6736(18)31948-2
  • Malynn S., Campos-Torres A., Moynagh P., Haase J. (2013). The pro-inflammatory cytokine TNF-α regulates the activity and expression of the serotonin transporter (SERT) in astrocytes. Neurochemical Research, 38(4), 694–704. https://doi.org/10.1007/s11064-012-0967-y
  • Mao Q. Q., Ip S. P., Ko K. M., Tsai S. H., Che C. T. (2009). Peony glycosides produce antidepressant-like action in mice exposed to chronic unpredictable mild stress: Effects on hypothalamic-pituitary-adrenal function and brain-derived neurotrophic factor. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 33(7), 1211–1216. https://doi.org/10.1016/j.pnpbp.2009.07.002
  • Mao Q. Q., Xian Y. F., Ip S. P., Tsai S. H., Che C. T. (2010). Long-term treatment with peony glycosides reverses chronic unpredictable mild stress-induced depressive-like behavior via increasing expression of neurotrophins in rat brain. Behavioural Brain Research, 210(2), 171–177. https://doi.org/10.1016/j.bbr.2010.02.026
  • McGuinness A. J., Davis J. A., Dawson S. L., Loughman A., Collier F., O’Hely M., Simpson C. A., Green J., Marx W., Hair C., Guest G., Mohebbi M., Berk M., Stupart D., Watters D., Jacka F. N. (2022). A systematic review of gut microbiota composition in observational studies of major depressive disorder, bipolar disorder and schizophrenia. Molecular Psychiatry, 27(4), 1920–1935. https://doi.org/10.1038/s41380-022-01456-3
  • Melo C. V., Okumoto S., Gomes J. R., Baptista M. S., Bahr B. A., Frommer W. B., Duarte C. B. (2013). Spatiotemporal resolution of BDNF neuroprotection against glutamate excitotoxicity in cultured hippocampal neurons. Neuroscience, 237, 66–86. https://doi.org/10.1016/j.neuroscience.2013.01.054
  • Menke A. (2019). Is the HPA axis as target for depression outdated, or is there a new hope? Frontiers in Psychiatry, 10, 101. https://doi.org/10.3389/fpsyt.2019.00101
  • Mi Y., Qi G., Vitali F., Shang Y., Raikes A. C., Wang T., Jin Y., Brinton R. D., Gu H., Yin F. (2023). Loss of fatty acid degradation by astrocytic mitochondria triggers neuroinflammation and neurodegeneration. Nature Metabolism, 5(3), 445–465. https://doi.org/10.1038/s42255-023-00756-4
  • Miller A. H., Raison C. L. (2016). The role of inflammation in depression: From evolutionary imperative to modern treatment target. Nature Reviews Immunology, 16(1), 22–34. https://doi.org/10.1038/nri.2015.5
  • Moncrieff J., Cooper R. E., Stockmann T., Amendola S., Hengartner M. P., Horowitz M. A. (2022). The serotonin theory of depression: a systematic umbrella review of the evidence. Molecular Psychiatry. https://doi.org/10.1038/s41380-022-01661-0
  • Montanari M., Martella G., Bonsi P., Meringolo M. (2022). Autism spectrum disorder: focus on glutamatergic neurotransmission. International Journal of Molecular Sciences, 23(7), 3861. https://doi.org/10.3390/ijms23073861
  • Mossad O., Batut B., Yilmaz B., Dokalis N., Mezö C., Nent E., Nabavi L. S., Mayer M., Maron F. J. M., Buescher J. M., de Agüero M. G., Szalay A., Lämmermann T., Macpherson A. J., Ganal-Vonarburg S. C., Backofen R., Erny D., Prinz M., Blank T. (2022). Gut microbiota drives age-related oxidative stress and mitochondrial damage in microglia via the metabolite N(6)-carboxymethyllysine. Nature Neuroscience, 25(3), 295–305. https://doi.org/10.1038/s41593-022-01027-3
  • Mössner R., Daniel S., Albert D., Heils A., Okladnova O., Schmitt A., Lesch K. P. (2000). Serotonin transporter function is modulated by brain-derived neurotrophic factor (BDNF) but not nerve growth factor (NGF). Neurochemistry International, 36(3), 197–202. https://doi.org/10.1016/s0197-0186(99)00122-9
  • Moussaoui N., Jacobs J. P., Larauche M., Biraud M., Million M., Mayer E., Taché Y. (2017). Chronic early-life stress in rat pups alters basal corticosterone, intestinal permeability, and fecal microbiota at weaning: Influence of sex. Journal of Neurogastroenterology and Motility, 23(1), 135–143. https://doi.org/10.5056/jnm16105
  • Murrough J. W., Abdallah C. G., Mathew S. J. (2017). Targeting glutamate signalling in depression: Progress and prospects. Nature Reviews Drug Discovery, 16(7), 472–486. https://doi.org/10.1038/nrd.2017.16
  • Murugan M., Ling E. A., Kaur C. (2013). Glutamate receptors in microglia. CNS & Neurological Disorders - Drug Targets, 12(6), 773–784. https://doi.org/10.2174/18715273113126660174
  • Murugan M., Sivakumar V., Lu J., Ling E. A., Kaur C. (2011). Expression of N-methyl D-aspartate receptor subunits in amoeboid microglia mediates production of nitric oxide via NF-kappaB signaling pathway and oligodendrocyte cell death in hypoxic postnatal rats. Glia, 59(4), 521–539. https://doi.org/10.1002/glia.21121
  • Naegelin Y., Dingsdale H., Sauberli K., Schadelin S., Kappos L., Barde Y. A. (2018). Measuring and validating the levels of brain-derived neurotrophic factor in human serum. eNeuro, 5(2), eneuro.0419-0417.2018. https://doi.org/10.1523/ENEURO.0419-17.2018
  • Nayernia Z., Jaquet V., Krause K. H. (2014). New insights on NOX enzymes in the central nervous system. Antioxidants & Redox Signaling, 20(17), 2815–2837. https://doi.org/10.1089/ars.2013.5703
  • Nishijo T., Suzuki E., Momiyama T. (2022). Serotonin 5-HT(1A) and 5-HT(1B) receptor-mediated inhibition of glutamatergic transmission onto rat basal forebrain cholinergic neurones. The Journal of Physiology, 600(13), 3149–3167. https://doi.org/10.1113/jp282509
  • Numakawa T., Kumamaru E., Adachi N., Yagasaki Y., Izumi A., Kunugi H. (2009). Glucocorticoid receptor interaction with TrkB promotes BDNF-triggered PLC-gamma signaling for glutamate release via a glutamate transporter. Proceedings of the National Academy of Sciences, 106(2), 647–652. https://doi.org/10.1073/pnas.0800888106
  • Numakawa T., Matsumoto T., Adachi N., Yokomaku D., Kojima M., Takei N., Hatanaka H. (2001). Brain-derived neurotrophic factor triggers a rapid glutamate release through increase of intracellular Ca(2+) and Na(+) in cultured cerebellar neurons. Journal of Neuroscience Research, 66(1), 96–108. https://doi.org/10.1002/jnr.1201
  • Otte C., Gold S. M., Penninx B. W., Pariante C. M., Etkin A., Fava M., Mohr D. C., Schatzberg A. F. (2016). Major depressive disorder. Nature Reviews Disease Primers, 2(1), 16065. https://doi.org/10.1038/nrdp.2016.65
  • Pace T. W., Hu F., Miller A. H. (2007). Cytokine-effects on glucocorticoid receptor function: Relevance to glucocorticoid resistance and the pathophysiology and treatment of major depression. Brain, Behavior, and Immunity, 21(1), 9–19. https://doi.org/10.1016/j.bbi.2006.08.009
  • Pajarillo E., Rizor A., Lee J., Aschner M., Lee E. (2019). The role of astrocytic glutamate transporters GLT-1 and GLAST in neurological disorders: Potential targets for neurotherapeutics. Neuropharmacology, 161, 107559. https://doi.org/10.1016/j.neuropharm.2019.03.002
  • Pan Y., Chen X. Y., Zhang Q. Y., Kong L. D. (2014). Microglial NLRP3 inflammasome activation mediates IL-1β-related inflammation in prefrontal cortex of depressive rats. Brain, Behavior, and Immunity, 41, 90–100. https://doi.org/10.1016/j.bbi.2014.04.007
  • Park S. S., Park H. S., Kim C. J., Baek S. S., Kim T. W. (2019). Exercise attenuates maternal separation-induced mood disorder-like behaviors by enhancing mitochondrial functions and neuroplasticity in the dorsal raphe. Behavioural Brain Research, 372, 112049. https://doi.org/10.1016/j.bbr.2019.112049
  • Parul M. A., Singh S., Singh S., Tiwari V., Chaturvedi S., Wahajuddin M., Palit G., Shukla S. (2021). Chronic unpredictable stress negatively regulates hippocampal neurogenesis and promote anxious depression-like behavior via upregulating apoptosis and inflammatory signals in adult rats. Brain Research Bulletin, 172, 164–179. https://doi.org/10.1016/j.brainresbull.2021.04.017
  • Pascual M., Climent E., Guerri C. (2001). BDNF induces glutamate release in cerebrocortical nerve terminals and in cortical astrocytes. Neuroreport, 12(12), 2673–2677. https://doi.org/10.1097/00001756-200108280-00017
  • Pascual-Brazo J., Castro E., Díaz A., Valdizán E. M., Pilar-Cuéllar F., Vidal R., Treceño B., Pazos A. (2012). Modulation of neuroplasticity pathways and antidepressant-like behavioural responses following the short-term (3 and 7 days) administration of the 5-HT₄ receptor agonist RS67333. The International Journal of Neuropsychopharmacology, 15(5), 631–643. https://doi.org/10.1017/s1461145711000782
  • Patel M. (2016). Targeting oxidative stress in central nervous system disorders. Trends in Pharmacological Sciences, 37(9), 768–778. https://doi.org/10.1016/j.tips.2016.06.007
  • Paton S. E., Menard C. (2023). Glutamate shall not pass: a mechanistic role for astrocytic O-GlcNAc transferase in stress and depression. Journal of Clinical Investigation, 133(7). https://doi.org/10.1172/jci168662
  • Pereira C. F., Oliveira C. R. (2000). Oxidative glutamate toxicity involves mitochondrial dysfunction and perturbation of intracellular Ca2+ homeostasis. Neuroscience Research, 37(3), 227–236. https://doi.org/10.1016/s0168-0102(00)00124-3
  • Picard K., Bisht K., Poggini S., Garofalo S., Golia M. T., Basilico B., Abdallah F., Ciano Albanese N., Amrein I., Vernoux N., Sharma K., Hui C. W., Savage J. C., Limatola C., Ragozzino D., Maggi L., Branchi I., Tremblay M. (2021). Microglial-glucocorticoid receptor depletion alters the response of hippocampal microglia and neurons in a chronic unpredictable mild stress paradigm in female mice. Brain, Behavior, and Immunity, 97, 423–439. https://doi.org/10.1016/j.bbi.2021.07.022
  • Pittenger C., Coric V., Banasr M., Bloch M., Krystal J. H., Sanacora G. (2008). Riluzole in the treatment of mood and anxiety disorders. CNS Drugs, 22(9), 761–786. https://doi.org/10.2165/00023210-200822090-00004
  • Pointer C. B., Klegeris A. (2017). Cardiolipin in central nervous system physiology and pathology. Cellular and Molecular Neurobiology, 37(7), 1161–1172. https://doi.org/10.1007/s10571-016-0458-9
  • Popova N. K., Naumenko V. S. (2019). Neuronal and behavioral plasticity: The role of serotonin and BDNF systems tandem. Expert Opinion on Therapeutic Targets, 23(3), 227–239. https://doi.org/10.1080/14728222.2019.1572747
  • Psarra A. M., Sekeris C. E. (2009). Glucocorticoid receptors and other nuclear transcription factors in mitochondria and possible functions. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1787(5), 431–436. https://doi.org/10.1016/j.bbabio.2008.11.011
  • Qin Z., Shi D. D., Li W., Cheng D., Zhang Y. D., Zhang S., Tsoi B., Zhao J., Wang Z., Zhang Z. J. (2023). Berberine ameliorates depression-like behaviors in mice via inhibiting NLRP3 inflammasome-mediated neuroinflammation and preventing neuroplasticity disruption. Journal of Neuroinflammation, 20(1), 54. https://doi.org/10.1186/s12974-023-02744-7
  • Qu Y., Yang C., Ren Q., Ma M., Dong C., Hashimoto K. (2017). Comparison of (R)-ketamine and lanicemine on depression-like phenotype and abnormal composition of gut microbiota in a social defeat stress model. Scientific Reports, 7(1), 15725. https://doi.org/10.1038/s41598-017-16060-7
  • Racine N., McArthur B. A., Cooke J. E., Eirich R., Zhu J., Madigan S. (2021). Global prevalence of depressive and anxiety symptoms in children and adolescents during COVID-19: A meta-analysis. JAMA Pediatrics, 175(11), 1142–1150. https://doi.org/10.1001/jamapediatrics.2021.2482
  • Rahman I., Marwick J., Kirkham P. (2004). Redox modulation of chromatin remodeling: Impact on histone acetylation and deacetylation, NF-kappaB and pro-inflammatory gene expression. Biochemical Pharmacology, 68(6), 1255–1267. https://doi.org/10.1016/j.bcp.2004.05.042
  • Raison C. L., Dantzer R., Kelley K. W., Lawson M. A., Woolwine B. J., Vogt G., Spivey J. R., Saito K., Miller A. H. (2010). CSF Concentrations of brain tryptophan and kynurenines during immune stimulation with IFN-alpha: Relationship to CNS immune responses and depression. Molecular Psychiatry, 15(4), 393–403. https://doi.org/10.1038/mp.2009.116
  • Ransohoff R. M., Schafer D., Vincent A., Blachere N. E., Bar-Or A. (2015). Neuroinflammation: Ways in which the immune system affects the brain. Neurotherapeutics, 12(4), 896–909. https://doi.org/10.1007/s13311-015-0385-3
  • Ratajczak W., Rył A., Mizerski A., Walczakiewicz K., Sipak O., Laszczyńska M. (2019). Immunomodulatory potential of gut microbiome-derived short-chain fatty acids (SCFAs). Acta Biochimica Polonica, 66(1), 1–12. https://doi.org/10.18388/abp.2018_2648.
  • Rawdin B. J., Mellon S. H., Dhabhar F. S., Epel E. S., Puterman E., Su Y., Burke H. M., Reus V. I., Rosser R., Hamilton S. P., Nelson J. C., Wolkowitz O. M. (2013). Dysregulated relationship of inflammation and oxidative stress in major depression. Brain, Behavior, and Immunity, 31, 143–152. https://doi.org/10.1016/j.bbi.2012.11.011
  • Reigstad C. S., Salmonson C. E., Rainey J. F3rd, Szurszewski J. H., Linden D. R., Sonnenburg J. L., Farrugia G., Kashyap P. C. (2015). Gut microbes promote colonic serotonin production through an effect of short-chain fatty acids on enterochromaffin cells. The FASEB Journal, 29(4), 1395–1403. https://doi.org/10.1096/fj.14-259598
  • Ren-Patterson R. F., Cochran L. W., Holmes A., Sherrill S., Huang S. J., Tolliver T., Lesch K. P., Lu B., Murphy D. L. (2005). Loss of brain-derived neurotrophic factor gene allele exacerbates brain monoamine deficiencies and increases stress abnormalities of serotonin transporter knockout mice. Journal of Neuroscience Research, 79(6), 756–771. https://doi.org/10.1002/jnr.20410
  • Reynolds I. J., Hastings T. G. (1995). Glutamate induces the production of reactive oxygen species in cultured forebrain neurons following NMDA receptor activation. The Journal of Neuroscience, 15(5 Pt 1), 3318–3327. https://doi.org/10.1523/JNEUROSCI.15-05-03318.1995
  • Riggs L. M., Gould T. D. (2021). Ketamine and the future of rapid-acting antidepressants. Annual Review of Clinical Psychology, 17, 207–231. https://doi.org/10.1146/annurev-clinpsy-072120-014126
  • Rios C., Santamaria A. (1991). Quinolinic acid is a potent lipid peroxidant in rat brain homogenates. Neurochemical Research, 16(10), 1139–1143. https://doi.org/10.1007/bf00966592
  • Rodriguez-Kern A., Gegelashvili M., Schousboe A., Zhang J., Sung L., Gegelashvili G. (2003). Beta-amyloid and brain-derived neurotrophic factor, BDNF, up-regulate the expression of glutamate transporter GLT-1/EAAT2 via different signaling pathways utilizing transcription factor NF-kappaB. Neurochemistry International, 43(4-5), 363–370. https://doi.org/10.1016/s0197-0186(03)00023-8
  • Rudzki L., Maes M. (2020). The microbiota-gut-immune-glia (MGIG) axis in major depression. Molecular Neurobiology, 57(10), 4269–4295. https://doi.org/10.1007/s12035-020-01961-y
  • Rudzki L., Maes M. (2021). From “leaky gut” to impaired glia-neuron communication in depression. Advances in Experimental Medicine and Biology, 1305, 129–155. https://doi.org/10.1007/978-981-33-6044-0_9
  • Saarelainen T., Hendolin P., Lucas G., Koponen E., Sairanen M., MacDonald E., Agerman K., Haapasalo A., Nawa H., Aloyz R., Ernfors P., Castrén E. (2003). Activation of the TrkB neurotrophin receptor is induced by antidepressant drugs and is required for antidepressant-induced behavioral effects. The Journal of Neuroscience, 23(1), 349–357. https://doi.org/10.1523/jneurosci.23-01-00349.2003
  • Samarajeewa A., Goldemann L., Vasefi M. S., Ahmed N., Gondora N., Khanderia C., Mielke J. G., Beazely M. A. (2014). 5-HT7 Receptor activation promotes an increase in TrkB receptor expression and phosphorylation. Frontiers in Behavioral Neuroscience, 8, 391. https://doi.org/10.3389/fnbeh.2014.00391
  • Sanacora G., Zarate C. A., Krystal J. H., Manji H. K. (2008). Targeting the glutamatergic system to develop novel, improved therapeutics for mood disorders. Nature Reviews Drug Discovery, 7(5), 426–437. https://doi.org/10.1038/nrd2462
  • Sanada K., Nakajima S., Kurokawa S., Barceló-Soler A., Ikuse D., Hirata A., Yoshizawa A., Tomizawa Y., Salas-Valero M., Noda Y., Mimura M., Iwanami A., Kishimoto T. (2020). Gut microbiota and major depressive disorder: A systematic review and meta-analysis. Journal of Affective Disorders, 266, 1–13. https://doi.org/10.1016/j.jad.2020.01.102
  • Schwarcz R., Bruno J. P., Muchowski P. J., Wu H. Q. (2012). Kynurenines in the mammalian brain: When physiology meets pathology. Nature Reviews Neuroscience, 13(7), 465–477. https://doi.org/10.1038/nrn3257
  • Serra-Millàs M. (2016). Are the changes in the peripheral brain-derived neurotrophic factor levels due to platelet activation? World Journal of Psychiatry, 6(1), 84–101. https://doi.org/10.5498/wjp.v6.i1.84
  • Shandilya S., Kumar S., Kumar Jha N., Kumar Kesari K., Ruokolainen J. (2022). Interplay of gut microbiota and oxidative stress: Perspective on neurodegeneration and neuroprotection. Journal of Advanced Research, 38, 223–244. https://doi.org/10.1016/j.jare.2021.09.005
  • Shirayama Y., Yang C., Zhang J. C., Ren Q., Yao W., Hashimoto K. (2015). Alterations in brain-derived neurotrophic factor (BDNF) and its precursor proBDNF in the brain regions of a learned helplessness rat model and the antidepressant effects of a TrkB agonist and antagonist. European Neuropsychopharmacology, 25(12), 2449–2458. https://doi.org/10.1016/j.euroneuro.2015.09.002
  • Simon M. S., Arteaga-Henríquez G., Fouad Algendy A., Siepmann T., Illigens B. M. W. (2023). Anti-inflammatory treatment efficacy in major depressive disorder: A systematic review of meta-analyses. Neuropsychiatric Disease and Treatment, 19, 1–25. https://doi.org/10.2147/ndt.S385117
  • Sivakumar V., Ling E. A., Lu J., Kaur C. (2010). Role of glutamate and its receptors and insulin-like growth factors in hypoxia induced periventricular white matter injury. Glia, 58(5), 507–523. https://doi.org/10.1002/glia.20940
  • Soiza-Reilly M., Commons K. G. (2011). Glutamatergic drive of the dorsal raphe nucleus. Journal of Chemical Neuroanatomy, 41(4), 247–255. https://doi.org/10.1016/j.jchemneu.2011.04.004
  • Stasi C., Sadalla S., Milani S. (2019). The relationship between the serotonin metabolism, gut-microbiota and the gut-brain axis. Current Drug Metabolism, 20(8), 646–655. https://doi.org/10.2174/1389200220666190725115503
  • Stone T. W., Behan W. M., MacDonald M., Darlington L. G. (2000). Possible mediation of quinolinic acid-induced hippocampal damage by reactive oxygen species. Amino Acids, 19(1), 275–281. https://doi.org/10.1007/s007260070059
  • Subramaniam S. R., Chesselet M. F. (2013). Mitochondrial dysfunction and oxidative stress in Parkinson’s disease. Progress in Neurobiology, 106-107, 17–32. https://doi.org/10.1016/j.pneurobio.2013.04.004
  • Sun N., Qin Y. J., Xu C., Xia T., Du Z. W., Zheng L. P., Li A. A., Meng F., Zhang Y., Zhang J., Liu X., Li T. Y., Zhu D. Y., Zhou Q. G. (2022). Design of fast-onset antidepressant by dissociating SERT from nNOS in the DRN. Science, 378(6618), 390–398. https://doi.org/10.1126/science.abo3566
  • Takeuchi H., Jin S., Wang J., Zhang G., Kawanokuchi J., Kuno R., Sonobe Y., Mizuno T., Suzumura A. (2006). Tumor necrosis factor-alpha induces neurotoxicity via glutamate release from hemichannels of activated microglia in an autocrine manner. Journal of Biological Chemistry, 281(30), 21362–21368. https://doi.org/10.1074/jbc.M600504200
  • Tauffenberger A., Magistretti P. J. (2021). Reactive oxygen species: Beyond their reactive behavior. Neurochemical Research, 46(1), 77–87. https://doi.org/10.1007/s11064-020-03208-7
  • Tavares R. G., Tasca C. I., Santos C. E., Alves L. B., Porciúncula L. O., Emanuelli T., Souza D. O. (2002). Quinolinic acid stimulates synaptosomal glutamate release and inhibits glutamate uptake into astrocytes. Neurochemistry International, 40(7), 621–627. https://doi.org/10.1016/s0197-0186(01)00133-4
  • Taylor S., Srinivasan B., Wordinger R. J., Roque R. S. (2003). Glutamate stimulates neurotrophin expression in cultured Muller cells. Molecular Brain Research, 111(1-2), 189–197. https://doi.org/10.1016/s0169-328x(03)00030-5
  • Tette F. M., Kwofie S. K., Wilson M. D. (2022). Therapeutic anti-depressant potential of microbial GABA produced by Lactobacillus rhamnosus strains for GABAergic signaling restoration and inhibition of addiction-induced HPA axis hyperactivity. Current Issues in Molecular Biology, 44(4), 1434–1451. https://doi.org/10.3390/cimb44040096
  • Theo V., Stephen S. L., Cristiana A. (2020). Global burden of 369 diseases and injuries in 204 countries and territories, 1990-2019: A systematic analysis for the Global Burden Of Disease Study 2019. The Lancet, 396(10258), 1204–1222. https://doi.org/10.1016/s0140-6736(20)30925-9
  • Tilleux S., Hermans E. (2007). Neuroinflammation and regulation of glial glutamate uptake in neurological disorders. Journal of Neuroscience Research, 85(10), 2059–2070. https://doi.org/10.1002/jnr.21325
  • Todd A. C., Hardingham G. E. (2020). The regulation of astrocytic glutamate transporters in health and neurodegenerative diseases. International Journal of Molecular Sciences, 21(24), 9607. https://doi.org/10.3390/ijms21249607
  • Troubat R., Barone P., Leman S., Desmidt T., Cressant A., Atanasova B., Brizard B., El Hage W., Surget A., Belzung C., Camus V. (2021). Neuroinflammation and depression: A review. European Journal of Neuroscience, 53(1), 151–171. https://doi.org/10.1111/ejn.14720
  • Vahid-Ansari F., Albert P. R. (2021). Rewiring of the serotonin system in major depression. Frontiers in Psychiatry, 12, 802581. https://doi.org/10.3389/fpsyt.2021.802581
  • Vašíček O., Lojek A., Číž M. (2020). Serotonin and its metabolites reduce oxidative stress in murine RAW264.7 macrophages and prevent inflammation. Journal of Physiology and Biochemistry, 76(1), 49–60. https://doi.org/10.1007/s13105-019-00714-3
  • Visentin A. P. V., Colombo R., Scotton E., Fracasso D. S., da Rosa A. R., Branco C. S., Salvador M. (2020). Targeting inflammatory-mitochondrial response in major depression: Current evidence and further challenges. Oxidative Medicine and Cellular Longevity, 2020, 2972968. https://doi.org/10.1155/2020/2972968
  • Volterra A., Trotti D., Floridi S., Racagni G. (1994). Reactive oxygen species inhibit high-affinity glutamate uptake: Molecular mechanism and neuropathological implications. Annals of the New York Academy of Sciences, 738, 153–162. https://doi.org/10.1111/j.1749-6632.1994.tb21800.x
  • Wang D., Wu J., Zhu P., Xie H., Lu L., Bai W., Pan W., Shi R., Ye J., Xia B., Zhao Z., Wang Y., Liu X., Zhao B. (2022). Tryptophan-rich diet ameliorates chronic unpredictable mild stress induced depression- and anxiety-like behavior in mice: The potential involvement of gut-brain axis. Food Research International, 157, 111289. https://doi.org/10.1016/j.foodres.2022.111289
  • Wang H., Jin M., Xie M., Yang Y., Xue F., Li W., Zhang M., Li Z., Li X., Jia N., Liu Y., Cui X., Hu G., Dong L., Wang G., Yu Q. (2023). Protective role of antioxidant supplementation for depression and anxiety: A meta-analysis of randomized clinical trials. Journal of Affective Disorders, 323, 264–279. https://doi.org/10.1016/j.jad.2022.11.072
  • Wei X., Ma Y., Li F., He H., Huang H., Huang C., Chen Z., Chen D., Chen J., Yuan X. (2021). Acute diallyl disulfide administration prevents and reveres lipopolysaccharide-induced depression-like behaviors in mice via regulating neuroinflammation and oxido-nitrosative stress. Inflammation, 44(4), 1381–1395. https://doi.org/10.1007/s10753-021-01423-0
  • Więdłocha M., Marcinowicz P., Krupa R., Janoska-Jaździk M., Janus M., Dębowska W., Mosiołek A., Waszkiewicz N., Szulc A. (2018). Effect of antidepressant treatment on peripheral inflammation markers-a meta-analysis. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 80(Pt C), 217–226. https://doi.org/10.1016/j.pnpbp.2017.04.026
  • Winter G., Hart R. A., Charlesworth R. P. G., Sharpley C. F. (2018). Gut microbiome and depression: What we know and what we need to know. Reviews in the Neurosciences, 29(6), 629–643. https://doi.org/10.1515/revneuro-2017-0072
  • Woodburn S. C., Asrat H. S., Flurer J. K., Schwierling H. C., Bollinger J. L., Vollmer L. L., Wohleb E. S. (2023). Depletion of microglial BDNF increases susceptibility to the behavioral and synaptic effects of chronic unpredictable stress. Brain, Behavior, and Immunity, 109, 127–138. https://doi.org/10.1016/j.bbi.2023.01.014
  • Woolston C., O’Meara S. (2019). Phd students in China report misery and hope. Nature, 575(7784), 711–713. https://doi.org/10.1038/d41586-019-03631-z
  • Wu A., Ying Z., Gomez-Pinilla F. (2004). The interplay between oxidative stress and brain-derived neurotrophic factor modulates the outcome of a saturated fat diet on synaptic plasticity and cognition. European Journal of Neuroscience, 19(7), 1699–1707. https://doi.org/10.1111/j.1460-9568.2004.03246.x
  • Wu H., Friedman W. J., Dreyfus C. F. (2004). Differential regulation of neurotrophin expression in basal forebrain astrocytes by neuronal signals. Journal of Neuroscience Research, 76(1), 76–85. https://doi.org/10.1002/jnr.20060
  • Xie X., Shen Q., Yu C., Xiao Q., Zhou J., Xiong Z., Li Z., Fu Z. (2020). Depression-like behaviors are accompanied by disrupted mitochondrial energy metabolism in chronic corticosterone-induced mice. The Journal of Steroid Biochemistry and Molecular Biology, 200, 105607. https://doi.org/10.1016/j.jsbmb.2020.105607
  • Xie X., Yu C., Zhou J., Xiao Q., Shen Q., Xiong Z., Li Z., Fu Z. (2020). Nicotinamide mononucleotide ameliorates the depression-like behaviors and is associated with attenuating the disruption of mitochondrial bioenergetics in depressed mice. Journal of Affective Disorders, 263, 166–174. https://doi.org/10.1016/j.jad.2019.11.147
  • Xiong W., Cao X., Zeng Y., Qin X., Zhu M., Ren J., Wu Z., Huang Q., Zhang Y., Wang M., Chen L., Turecki G., Mechawar N., Chen W., Yi G., Zhu X. (2019). Astrocytic epoxyeicosatrienoic acid signaling in the medial prefrontal cortex modulates depressive-like behaviors. The Journal of Neuroscience, 39(23), 4606–4623. https://doi.org/10.1523/jneurosci.3069-18.2019
  • Yagasaki Y., Numakawa T., Kumamaru E., Hayashi T., Su T. P., Kunugi H. (2006). Chronic antidepressants potentiate via sigma-1 receptors the brain-derived neurotrophic factor-induced signaling for glutamate release. Journal of Biological Chemistry, 281(18), 12941–12949. https://doi.org/10.1074/jbc.M508157200
  • Yager S., Forlenza M. J., Miller G. E. (2010). Depression and oxidative damage to lipids. Psychoneuroendocrinology, 35(9), 1356–1362. https://doi.org/10.1016/j.psyneuen.2010.03.010
  • Yang C., Fujita Y., Ren Q., Ma M., Dong C., Hashimoto K. (2017). Bifidobacterium in the gut microbiota confer resilience to chronic social defeat stress in mice. Scientific Reports, 7, 45942. https://doi.org/10.1038/srep45942
  • Yang F., Wang H., Chen H., Ran D., Tang Q., Weng P., Sun Y., Jiang W. (2020). RAGE Signaling pathway in hippocampus dentate gyrus involved in GLT-1 decrease induced by chronic unpredictable stress in rats. Brain Research Bulletin, 163, 49–56. https://doi.org/10.1016/j.brainresbull.2020.06.020
  • Yardeni T., Tanes C. E., Bittinger K., Mattei L. M., Schaefer P. M., Singh L. N., Wu G. D., Murdock D. G., Wallace D. C. (2019). Host mitochondria influence gut microbiome diversity: A role for ROS. Science Signaling, 12(588), eaaw3159. https://doi.org/10.1126/scisignal.aaw3159
  • Ye Q., Lin S. S., Ulrich H., Tang Y. (2023). Decoupling SERT-nNOS interaction to generate fast-onset antidepressants. Neuroscience Bulletin. https://doi.org/10.1007/s12264-023-01049-2
  • Yoo J. M., Lee B. D., Sok D. E., Ma J. Y., Kim M. R. (2017). Neuroprotective action of N-acetyl serotonin in oxidative stress-induced apoptosis through the activation of both TrkB/CREB/BDNF pathway and Akt/Nrf2/Antioxidant enzyme in neuronal cells. Redox Biology, 11, 592–599. https://doi.org/10.1016/j.redox.2016.12.034
  • Yu M., Jia H., Zhou C., Yang Y., Zhao Y., Yang M., Zou Z. (2017). Variations in gut microbiota and fecal metabolic phenotype associated with depression by 16S rRNA gene sequencing and LC/MS-based metabolomics. Journal of Pharmaceutical and Biomedical Analysis, 138, 231–239. https://doi.org/10.1016/j.jpba.2017.02.008
  • Yu Y. B., Zhao D. Y., Qi Q. Q., Long X., Li X., Chen F. X., Zuo X. L. (2017). BDNF modulates intestinal barrier integrity through regulating the expression of tight junction proteins. Neurogastroenterology & Motility, 29(3), e12967. https://doi.org/10.1111/nmo.12967
  • Zafir A., Banu N. (2007). Antioxidant potential of fluoxetine in comparison to Curcuma longa in restraint-stressed rats. European Journal of Pharmacology, 572(1), 23–31. https://doi.org/10.1016/j.ejphar.2007.05.062
  • Zhang B. (2017). Consequences of early adverse rearing experience (EARE) on development: Insights from non-human primate studies. Zool Res, 38(1), 7–35. https://doi.org/10.13918/j.issn.2095-8137.2017.002.
  • Zhang B., Li C. Y., Wang X. S. (2017). The effect of hippocampal NMDA receptor blockade by MK-801 on cued fear extinction. Behavioural Brain Research, 332, 200–203. https://doi.org/10.1016/j.bbr.2017.05.067
  • Zhang B., Xiong F., Ma Y., Li B., Mao Y., Zhou Z., Yu H., Li J., Li C., Fu J., Wang J., Zhao X. (2019). Chronic phencyclidine treatment impairs spatial working memory in rhesus monkeys. Psychopharmacology, 236(7), 2223–2232. https://doi.org/10.1007/s00213-019-05214-2
  • Zhang J. C., Wu J., Fujita Y., Yao W., Ren Q., Yang C., Li S. X., Shirayama Y., Hashimoto K. (2014). Antidepressant effects of TrkB ligands on depression-like behavior and dendritic changes in mice after inflammation. International Journal of Neuropsychopharmacology, 18(4). https://doi.org/10.1093/ijnp/pyu077.
  • Zhang J. C., Yao W., Dong C., Yang C., Ren Q., Ma M., Han M., Hashimoto K. (2015). Comparison of ketamine, 7,8-dihydroxyflavone, and ANA-12 antidepressant effects in the social defeat stress model of depression. Psychopharmacology, 232(23), 4325–4335. https://doi.org/10.1007/s00213-015-4062-3
  • Zhang J. C., Yao W., Hashimoto K. (2016). Brain-derived neurotrophic factor (BDNF)-TrkB signaling in inflammation-related depression and potential therapeutic targets. Current Neuropharmacology, 14(7), 721–731. https://doi.org/10.2174/1570159x14666160119094646
  • Zhang Y., Huang R., Cheng M., Wang L., Chao J., Li J., Zheng P., Xie P., Zhang Z., Yao H. (2019). Gut microbiota from NLRP3-deficient mice ameliorates depressive-like behaviors by regulating astrocyte dysfunction via circHIPK2. Microbiome, 7(1), 116. https://doi.org/10.1186/s40168-019-0733-3
  • Zhang Z., Fan J., Ren Y., Zhou W., Yin G. (2013). The release of glutamate from cortical neurons regulated by BDNF via the TrkB/Src/PLC-γ1 pathway. Journal of Cellular Biochemistry, 114(1), 144–151. https://doi.org/10.1002/jcb.24311
  • Zhao D. Y., Zhang W. X., Qi Q. Q., Long X., Li X., Yu Y. B., Zuo X. L. (2018). Brain-derived neurotrophic factor modulates intestinal barrier by inhibiting intestinal epithelial cells apoptosis in mice. Physiological Research, 67(3), 475–485. https://doi.org/10.33549/physiolres.933641
  • Zheng G., Wu S. P., Hu Y., Smith D. E., Wiley J. W., Hong S. (2013). Corticosterone mediates stress-related increased intestinal permeability in a region-specific manner. Neurogastroenterology & Motility, 25(2), e127–e139. https://doi.org/10.1111/nmo.12066
  • Zhou R., Yazdi A. S., Menu P., Tschopp J. (2011). A role for mitochondria in NLRP3 inflammasome activation. Nature, 469(7329), 221–225. https://doi.org/10.1038/nature09663
  • Zhou Y., Hassel B., Eid T., Danbolt N. C. (2019). Axon-terminals expressing EAAT2 (GLT-1; Slc1a2) are common in the forebrain and not limited to the hippocampus. Neurochemistry International, 123, 101–113. https://doi.org/10.1016/j.neuint.2018.03.006
  • Zhu C. B., Blakely R. D., Hewlett W. A. (2006). The proinflammatory cytokines interleukin-1beta and tumor necrosis factor-alpha activate serotonin transporters. Neuropsychopharmacology, 31(10), 2121–2131. https://doi.org/10.1038/sj.npp.1301029
  • Zhu X., Sakamoto S., Ishii C., Smith M. D., Ito K., Obayashi M., Unger L., Hasegawa Y., Kurokawa S., Kishimoto T., Li H., Hatano S., Wang T. H., Yoshikai Y., Kano S. I., Fukuda S., Sanada K., Calabresi P. A., Kamiya A. (2023). Dectin-1 signaling on colonic γδ T cells promotes psychosocial stress responses. Nature Immunology, 24(4), 625–636. https://doi.org/10.1038/s41590-023-01447-8
  • Zhu X. N., Li J., Qiu G. L., Wang L., Lu C., Guo Y. G., Yang K. X., Cai F., Xu T., Yuan T. F., Hu J. (2023). Propofol exerts anti-anhedonia effects via inhibiting the dopamine transporter. Neuron, 111(10), 1626–1636.e6. https://doi.org/10.1016/j.neuron.2023.02.017
  • Zlatković J., Filipović D. (2013). Chronic social isolation induces NF-κB activation and upregulation of iNOS protein expression in rat prefrontal cortex. Neurochemistry International, 63(3), 172–179. https://doi.org/10.1016/j.neuint.2013.06.002
  • Zlatković J., Todorović N., Bošković M., Pajović S. B., Demajo M., Filipović D. (2014). Different susceptibility of prefrontal cortex and hippocampus to oxidative stress following chronic social isolation stress. Molecular and Cellular Biochemistry, 393(1-2), 43–57. https://doi.org/10.1007/s11010-014-2045-z
  • Zou J., Crews F. (2006). CREB And NF-kappaB transcription factors regulate sensitivity to excitotoxic and oxidative stress induced neuronal cell death. Cellular and Molecular Neurobiology, 26(4-6), 385–405. https://doi.org/10.1007/s10571-006-9045-9
  • Zou W., Feng R., Yang Y. (2018). Changes in the serum levels of inflammatory cytokines in antidepressant drug-naive patients with major depression. PLoS One, 13(6), e0197267. https://doi.org/10.1371/journal.pone.0197267