0
Views
2
CrossRef citations to date
0
Altmetric
Original Papers

Diazepam Binding Inhibitor Control of Eu- and Hypoglycemic Patterns of Ventromedial Hypothalamic Nucleus Glucose-Regulatory Signaling

, , , & ORCID Icon
Article: 17590914231214116 | Received 03 Jul 2023, Accepted 28 Oct 2023, Published online: 16 Jul 2024

References

  • Agius L. (2008). Glucokinase and molecular aspects of liver glycogen metabolism. Biochem J, 414(1), 1–18. https://doi.org/10.1042/BJ20080595
  • Agius L. (2016). Hormonal and metabolite regulation of hepatic glucokinase. Annu. Rev. Nutr, 36, 389–415. https://doi.org/10.1146/annurev-nutr-071715-051145
  • Alenazi F. S. H., Ibrahim B. A., Briski K. P. (2014). Estradiol regulates effects of hindbrain activator 5-aminoimidazole-4-carboxamide-riboside administration on hypothalamic adenosine 5’-monophosphate-activated protein kinase activity and metabolic neurotransmitter mRNA and protein expression. J. Neurosci. Res, 93(4), 651–659. https://doi.org/10.1002/jnr.23520
  • Alho H., Costa E., Ferrero P., Fujimoto M., Cosenza-Murphy D., Guidotti A. (1985). Diazepam-binding inhibitor: A neuropeptide located in selected neuronal populations of rat brain. Science, 229(4709), 179–182. https://doi.org/10.1126/science.3892688
  • Ali M. H., Alshamrani A. A., Briski K. P. (2022). Hindbrain lactate regulation of hypoglycemia-associated patterns of catecholamine and metabolic-sensory biomarker gene expression in A2 noradrenergic neurons innervating the ventromedial hypothalamic nucleus in male versus female rat. J. Chem. Neuroanat. https://doi.org/10.1016/j.jchemneu.2022.102102
  • Ali M. H., Alshamrani A. A., Napit P. R., Briski K. P. (2022). Single-cell multiplex qPCR evidence for sex-dimorphic glutamate decarboxylase, estrogen receptor, and 5’-AMP-activated protein kinase alpha subunit mRNA expression by ventromedial hypothalamic nucleus GABAergic neurons. J. Chem. Neuroanat, 27, 102132.
  • Alquier T., Christian-Hinman C. A., Alfonso J., Færgeman N. J. (2021). From benzodiazepines to fatty acids and beyond: Revisiting the role of ACBP/DBI. Trends Endocrinol Metab, 32, 890–903. https://doi.org/10.1016/j.tem.2021.08.009
  • Alshamrani A. A., Ibrahim M. M. H., Briski K. P. (2022). Effects of short-term food deprivation on catecholamine and metabolic-sensory biomarker gene expression in hindbrain A2 noradrenergic neurons projecting to the forebrain rostral preoptic area: Impact of negative versus positive estradiol feedback. IBRO Neurosci. Rep, 13, 38–46. https://doi.org/10.1016/j.ibneur.2022.06.001
  • Bheemanapally K., Alhamyani A. R., Ibrahim M. M. H., Briski K. P. (2021). Ventromedial hypothalamic nucleus glycogen phosphorylase regulation of metabolic-sensory neuron AMPK and neurotransmitter protein expression: Role of L-lactate. Amer. J. Physiol. Regul. Integr. Comp. Physiol, 320(6), R791–R799. https://doi.org/10.1152/ajpregu.00292.2020
  • Bheemanapally K., Ibrahim M. M. H., Briski K. P. ( 2020). Combinatory high-resolution microdissection/ultra-performance liquid chromatographic-mass spectrometry approach for small tissue volume analysis of rat brain glycogen. J. Pharmaceut. Biomed. Anal, 178(January), 112884. https://doi.org/10.1016/j.jpba.2019.112884
  • Bouyakdan K., Martin H., Liénard F., Budry L., Taib B., Rodaros D., Chrétien C., Biron É, Husson Z., Cota D., Pénicaud L., Fulton S., Fioramonti X., Alquier T. (2019). The gliotransmitter ACBP controls feeding and energy homeostasis via the melanocortin system. J. Clin. Invest, 129(6), 2417–2430. https://doi.org/10.1172/JCI123454
  • Briski K. P., Mandal S. K., Bheemanapally K., Ibrahim M. M. H. (2020). Effects of acute versus recurrent insulin-induced hypoglycemia on ventromedial hypothalamic nucleus metabolic-sensory neuron AMPK activity: Impact of alpha1-adrenergic receptor signaling. Brain Res. Bull, 157, 41–50. https://doi.org/10.1016/j.brainresbull.2020.01.013
  • Briski K. P., Napit P. R., Alhamyani A. R., LePrince J. R., Mahmood A. S. M. H. (2023). Sex-dimorphic octadecaneuropeptide (ODN) regulation of ventromedial hypothalamic nucleus metabolic-sensory neuron 5’AMP-activated protein kinase activity, transmitter signaling and counter-regulatory hormone secretion in rat. ASN Neuro, 15, 17590914231167230. https://doi.org/10.1177/17590914231167230
  • Chan O., Sherwin R. (2013). Influence of VMH fuel sensing on hypoglycemic responses. Trends Endocrinol. Metab, 24(12), 616–624. https://doi.org/10.1016/j.tem.2013.08.005
  • Chan O., Zhu W., Ding Y., McCrimmon R. J., Sherwin R. S. (2006). Blockade of GABA(A) receptors in the ventromedial hypothalamus further stimulates glucagon and sympathoadrenal but not the hypothalamo-pituitary-adrenal response to hypoglycemia. Diabetes, 55(4), 1080–1087. https://doi.org/10.2337/diabetes.55.04.06.db05-0958
  • Ferrero P., Santi M. R., Conti-Tronconi B., Costa E., Guidotti A. (1986). Study of an octadecaneuropeptide derived from diazepam binding inhibitor (DBI): Biological activity and presence in rat brain. Proc. Natl. Acad. Sci, 83(3), 827–831. https://doi.org/10.1073/pnas.83.3.827
  • Fioramonti X., Marsollier N., Song Z., Fakira K. A., Patel R. M., Brown S., Duparc T., Pica-Mendez A., Sanders N. M., Knauf C., Valet P., McCrimmon R. J., Beuve A., Magnan C., Routh V. H. (2010). Ventromedial hypothalamic nitric oxide production is necessary for hypoglycemia detection and counterregulation. Diabetes, 59(2), 519–528. https://doi.org/10.2337/db09-0421
  • Guidotti A., Forchetti C. M., Corda M. G., Konkel D., Bennett C. D., Costa E. (1983). Isolation, characterization, and purification to homogeneity of an endogenous polypeptide with agonistic action on benzodiazepine receptors. Proc. Natl. Acad. Sci, 80(11), 3531–3535. https://doi.org/10.1073/pnas.80.11.3531
  • Gujar A. D., Ibrahim B. A., Tamrakar P., Koshy Cherian A., Briski K. P. (2014). Hindbrain lactostasis regulates hypothalamic AMPK activity and hypothalamic metabolic neurotransmitter mRNA and protein responses to hypoglycemia. Amer. J. Physiol. Regul. Integ. Comp. Physiol, 306(7), R457–R469. https://doi.org/10.1152/ajpregu.00151.2013
  • Han S. M., Namkoong C., Jang P. G., Park I. S., Hong S. W., Katakami H., Chun S., Kim S. W., Park J. Y., Lee K. U., Kim M. S. (2005). Hypothalamic AMP-activated protein kinase mediates counter-regulatory responses to hypoglycaemia in rats. Diabetologia, 48(10), 2170–2178. https://doi.org/10.1007/s00125-005-1913-1
  • Hardie D. G., Lin S. C. (2017). AMP-activated protein kinase – not just an energy sensor. F1000R, 6, 1724. https://doi.org/10.12688/f1000research.11960.1
  • Hardie D. G., Ross F. A., Hawley S. A. (2012). AMPK: A nutrient and energy sensor that maintains energy homeostasis. Nat. Rev. Mol. Cell Biol, 13(4), 251–262. https://doi.org/10.1038/nrm3311
  • Hardie D. G., Schaffer B. E., Brunet A. (2016). AMPK: An energy-sensing pathway with multiple inputs and outputs. Trends in Cell Biology, 26(3), 190–201. https://doi.org/10.1016/j.tcb.2015.10.013
  • Ibrahim M. M. H., Bheemanapally K., Alhamami H. N., Briski K. P. (2020). Effects of intracerebroventricular glycogen phosphorylase inhibitor CP-316,819 infusion on hypothalamic glycogen content and metabolic neuron AMPK activity and neurotransmitter expression in the male rat. J. Mol. Neurosci, 70, 647–658. https://doi.org/10.1007/s12031-019-01471-0
  • Lanfray D., Arthaud S., Ouellet J., Compère V., Do Rego J. L., Leprince J., Lefranc B., Castel H., Bouchard C., Monge-Roffarello B., Richard D., Pelletier G., Vaudry H., Tonon M. C., Morin F. (2013). Gliotransmission and brain glucose sensing: Critical role of endozepines. Diabetes, 62(3), 801–810. https://doi.org/10.2337/db11-0785
  • Lebrun B., Barbot M., Tonon M. C., Prévot V., Leprince J., Troadec J. D. (2020). Glial endozepines and energy balance: Old peptides with new tricks. Glia. (5). https://doi.org/10.1002/glia.23927. PMID: 33105065.
  • Livak K. J., Schmittgen T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2−Delta Delta C(t) method. Methods, 25(4), 402–408. https://doi.org/10.1006/meth.2001.1262
  • López M. (2018). Hypothalamic AMPK and energy balance. Eur J Clin Invest, 48(9), e12996. https://doi.org/10.1111/eci.12996
  • Malagon M., Vaudry H., Van Strien F., Pelletier G., Gracia-Navarro F., Tonon M. C. (1993). Ontogeny of diazepam-binding inhibitor-related peptides (endozepines) in the rat brain. Neuroscience, 57, 777–786. https://doi.org/10.1016/0306-4522(93)90023-9
  • Matschinsky F. M., Wilson D. F. (2019). The central role of glucokinase in glucose homeostasis; a perspective 50 years after demonstrating the presence of the enzyme in islets of Langerhans. Front Physiol. March). https://doi.org/10.3389/fphys.2019.00148
  • McCrimmon R. J., Shaw M., Fan X., Cheng H., Ding Y., Vella M. C., Zhou L., McNay E. C., Sherwin R. S. (2008). Key role for AMP-activated protein kinase in the ventromedial hypothalamus in regulating counterregulatory hormone responses to acute hypoglycemia. Diabetes, 57(2), 444–450. https://doi.org/10.2337/db07-0837
  • Montégut L., Lopez-Otin C., Magnan C., Kroemer G. (2021). Old paradoxes and new opportunities for appetite control in obesity. Trends Endocrinol Metab, 32(5), 264–294. https://doi.org/10.1016/j.tem.2021.02.005
  • Napit P. R., Ali M. H., Shakya M., Bheemanapally K., Mahmood A. S. M. H., Ibrahim M. M. H., Briski K. P. (2019). Hindbrain estrogen receptor regulation of counter-regulatory hormone secretion and ventromedial hypothalamic nucleus glycogen content and glucoregulatory transmitter signaling in hypoglycemic female rats. Neuroscience, 411(July), 211–221. https://doi.org/10.1016/j.neuroscience.2019.05.007
  • Pedro J. M. B., Sica V., Madeo F., Kroemer G. (2019). Acyl-CoA-binding protein (ACBP): The elusive ‘hunger factor’ linking autophagy to food intake. Cell Stress, 3(10), 312–318. https://doi.org/10.15698/cst2019.10.200
  • Pimentel G. D., Ropelle E. R., Rocha G. Z., Carvalheira J. B. C. (2013). The role of neuronal AMPK as a mediator of nutritional regulation of food intake and energy homeostasis. Metabolism, 62, 171–178. https://doi.org/10.1016/j.metabol.2012.07.001
  • Routh V. H., Hao L., Santiago A. M., Sheng Z., Zhou C. (2014). Hypothalamic glucose sensing: Making ends meet. Front. Syst. Neurosci, 8, 236. https://doi.org/10.3389/fnsys.2014.00236
  • Roy S. C., Napit P. R., Pasula M., Bheemanapally K., Briski K. P. (2023). G protein-coupled lactate receptor GPR81 control of ventrolateral ventromedial hypothalamic nucleus glucoregulatory neurotransmitter and 5’-AMP-activated protein kinase expression. Amer. J. Physiol. Regul. Integr. Comp. Physiol, 324(1), R20–R34. https://doi.org/10.1152/ajpregu.00100.2022
  • Shakya M., Shrestha P. K., Briski K. P. (2018). Hindbrain 5’-monophosphate-activated protein kinase mediates short-term food deprivation inhibition of the gonadotropin-releasing hormone-luteinizing hormone axis: Role of nitric oxide. Neuroscience, 383, 46–59. https://doi.org/10.1016/j.neuroscience.2018.04.040
  • Sternisha S. M., Miller B. G. (2019). Molecular and cellular regulation of human glucokinase. Arch Biochem Biophys, 663(March), 199–213. https://doi.org/10.1016/j.abb.2019.01.011
  • Stobart J. L., Anderson C. M. (2013). Multifunctional role of astrocytes as gatekeepers of neuronal energy supply. Cell Neurosci, 7, 1–21. https://doi.org/10.3389/fncel.2013.00038
  • Tonon M. C., Désy L., Nicolas P., Vaudry H., Pelletier G. (1990). Immunocytochemical localization of the endogenous benzodiazepine ligand octadecaneuropeptide (ODN) in the rat brain. Neuropeptides, 15, 17–24. https://doi.org/10.1016/0143-4179(90)90155-r
  • Tonon M. C., Vaudry H., Chuquet J., Guillebaud F., Fan J., Masmoudi-Kouki O., Vaudry D., Lanfray D., Morin F., Prevot V., Papadopoulos V., Troadec J. D., Leprince J. (2020). Endozepines and their receptors: Structure, functions and pathophysiological significance. Pharmacol. Ther, 208(April), 107386. https://doi.org/10.1016/j.pharmthera.2019.06.008
  • Tu L., Fukuda M., Tong Q., Xu Y. (2022). The ventromedial hypothalamic nucleus: Watchdog of whole-body glucose homeostasis. Cell & Bioscience, 12, 71. https://doi.org/10.1186/s13578-022-00799-2
  • Uddin M. M., Ibrahim M. M. H., Briski K. P. (2021). Glycogen phosphorylase isoform regulation of ventromedial hypothalamic nucleus gluco-regulatory neuron 5’-AMP-activated protein kinase and transmitter marker protein expression. ASN Neuro, 13, 17590914211035020. https://doi.org/10.1177/17590914211035020
  • Uddin M. M., Mahmood A. S. M. H., Ibrahim M. M. H., Briski K. P. (2019). Sex dimorphic estrogen receptor regulation of ventromedial hypothalamic nucleus glucoregulatory neuron adrenergic receptor expression in hypoglycemic male and female rats. Brain Res. https://doi.org/10.1016/j.brainres.2019.146311
  • Vavaiya K. V., Briski K. P. (2008). Effects of caudal hindbrain lactate infusion on insulin-induced hypoglycemia and neuronal substrate transporter glucokinase and sulfonylurea receptor-1 gene expression in the ovariectomized female rat dorsal vagal complex: Impact of estradiol. J. Neurosci. Res, 86(3), 694–701. https://doi.org/10.1002/jnr.21530
  • Watts A. G., Donovan C. M. (2010). Sweet talk in the brain: Glucosensing, neural networks, and hypoglycemic counterregulation. Front. Neuroendocrinol, 31(1), 32–43. https://doi.org/10.1016/j.yfrne.2009.10.006
  • Woods A., Salt I., Scott J., Hardie D. G., Carling D. (1996). The alpha1 and alpha2 isoforms of the AMP-activated protein kinase have similar activities in rat liver but exhibit differences in substrate specificity in vitro. FEBS Lett, 397(2–3), 347–351. https://doi.org/10.1016/s0014-5793(96)01209-4
  • Xue B., Kahn B. B. (2006). AMPK Integrates nutrient and hormonal signals to regulate food intake and energy balance through effects in the hypothalamus and peripheral tissues. J Physiol, 574, 73–83. https://doi.org/10.1113/jphysiol.2006.113217