320
Views
31
CrossRef citations to date
0
Altmetric
Articles

25 year perspective Aspects of strain and strength measurement in miniaturised testing for engineering metals and ceramics

, , &
Pages 127-148 | Published online: 19 Jul 2013

REFERENCES

  • ‘Small specimen test techniques’, (ed. M. A. Sokolov et al), Vol. 4, STP 1418; 2000, Philadelphia, PA, ASTM.
  • ‘Small specimen test techniques’, (ed. M. A. Sokolov et al), Vol. 5, STP 1502; 2007, Philadelphia, PA, ASTM.
  • T. H. Hyde, W. Sun and J. A. Williams: ‘Requirements for and use of miniature test specimens to provide mechanical and creep properties of materials: A review’, Int. Mater. Rev., 2007, 52, (4), 213–255.
  • A. Gouldstone, N. Chollacoop, M. Dao, J. Li, A. M. Minor and Y.-L. Shen: ‘Indentation across size scales and disciplines: Recent developments in experimentation and modeling’, Acta Mater., 2007, 55, 4015–4039.
  • I. Brooks, P. Lin, G. Palumbo, G. D. Hibbard and U. Erb: ‘Analysis of hardness-tensile strength relationships for electro-formed nanocrystalline materials’, Mater. Sci. Eng. A, 2008, A491, 412–419.
  • E. Demir, D. Raabe, N. Zaafarani and S. Zaefferer: ‘Investigation of the indentation size effect through the measurement of the geometrically necessary dislocations beneath small indents of different depths using EBSD tomography’, Acta Mater., 2009, 57, 559–569.
  • M. Rester, C. Motz and R. Pippan: ‘Indentation across size scales — A survey of indentation-induced plastic zones in copper {1111 single crystals’, Scr. Mater., 2008, 59, 742–745.
  • M. D. Nix and H. Gao: ‘Indentation size effects in crystalline materials: A law for strain gradient plasticity’, J. Mech. Phys. Solids, 1998, 46, (3), 411–425.
  • M. Zhao, W. S. Slaughter, M. Li and S. X. Mao: ‘Material-length-scale-controlled nanoindentation size effects due to strain-gradient plasticity’, Acta Mater., 2003, 51, 4461–4469.
  • J. B. Pethica, R. Hutchings and W. C. Oliver: ‘Hardness measurement at penetration depths as small as 20 nm’, Philos. Mag. A, 1983, 48A, (4), 593–606.
  • F. Diologent, R. Goodall and A. Mortensen: ‘Surface oxide in replicated microcellular aluminium and its influence on the plasticity size effect’, Acta Mater., 2009, 57, 286–294.
  • A. lost and R. Bigot: ‘Indentation size effect: Reality or artefact?’ J. Mater. Sci., 1996, 31, 3573–3577.
  • T. Chudoba, P. Schwaller, R. Rabe, J.-M. Breguet and J. Michler: ‘Comparison of nanoindentation results obtained with Berkovich and cube-corner indenters’, Philos. Mag., 2006, 86, (33-35), 5265–5283.
  • X. D. Hou, A. J. Bushby and N. M. Jennett: ‘Study of the interaction between the indentation size effect and Hall—Petch effect with spherical indenters on annealed polycrystalline copper’, J. Appl. Phys. D, 2008, 41D, 074006–074012.
  • J. R. Greer: ‘Bridging the gap between computational and experimental length scales: a review on nano-scale plasticity’, Rev. Adv. Mater. Sci, 2006, 13, 59–70.
  • J. R. Greer, W. C. Oliver and W. D. Nix: ‘Size dependence of mechanical properties of gold at the micron scale in the absence of strain gradients’, Acta Mater., 2005, 53, 1821–1830.
  • R. Maafl, S. van Petegem, J. Zimmermann, C. N. Borca and H. van Swygenhoven: ‘On the initial microstructure of metallic micropillars’, Scr. Mater., 2008, 59, 471–474.
  • H. Bei, S. Shim, G. M. Pharr and E. P. George: ‘Effects of pre-strain on the compressive stress—strain response of Mo-alloy single-crystal micropillars’, Acta Mater., 2008, 56, 4762–4770.
  • D. Kiener, C. Motz and G. Dehm: ‘Micro-compression testing: a critical discussion of experimental constraints’, Mater. Sci. Eng. A, 2009, A505, 79–87.
  • C. P. Frick, B. G. Clark, S. Orso, A. S. Schneider and E. Arzt: ‘Size effect on strength and strain hardening of small-scalel 1 1 nickel compression pillars’, Mater. Sci. Eng. A, 2008, A489, 319–329.
  • S. I. Rao, D. M. Dimiduk, T. A. Parthasarathy, M. D. Uchic, M. Tang and C. Woodward: ‘Athermal mechanisms of size-dependent crystal flow gleaned from three-dimensional discrete dislocation simulations’, Acta Mater., 2008, 56, 3245–3259.
  • C. Motz, D. Weygand, J. Senger and P. Gumbsch: ‘Micro-bending tests: a comparison between three-dimensional discrete dislocation dynamics simulations and experiments’, Acta Mater., 2008, 56, 1942–1955.
  • J. Senger, D. Weygand, P. Gumbsch and O. Kraft: ‘Discrete dislocation simulations of the plasticity of micro-pillars under uniaxial loading’, Scr. Mater., 2008, 58, 587–590.
  • D. Kiener, W. Grosinger, G. Dehm and R. Pippan: ‘A further step towards an understanding of size-dependent crystal plasticity: in situ tension experiments of miniaturized single-crystal copper samples’, Acta Mater., 2008, 56, 580–592.
  • S. Shim, H. Bei, M. K. Miller, G. M. Pharr and E. P. George: ‘Effects of focused ion beam milling on the compressive behavior of directionally solidified micropillars and the nanoindentation response of an electropolished surface’, Acta Mater., 2009, 57, 503–510.
  • R. Dou and B. Derby: ‘A universal scaling law for the strength of metal micropillars and nanowires’, Scr. Mater., 2009,61, 524–527.
  • N. M. Jennett, R. Ghisleni and J. Michler: ‘Enhanced yield strength of materials: the thinness effect’, Appl Phys. Lett., 2009, 95, (12), 123102.
  • J. Quinta da Fonseca, P. M. Mummery and P. J. Withers: ‘Full-field strain mapping by optical correlation of micrographs acquired during deformation’, J. Microsc., 2005, 218, (1), 9–21.
  • M. H. Poech and H. F. Fischmeister: ‘Deformation of two-phase materials: a model based on strain compatibility’, Acta MetalL Mater., 1992, 40, (3), 487–494.
  • H. Fischmeister and B. Karlsson: ‘Plasticity of two-phase materials with a coarse microstructure’, Z. Metallkd, 1977, 68, 311–327.
  • P. Bate: ‘Modelling deformation microstructure with the crystal plasticity finite-element method’, Philos. Trans. R Soc. London A, 1999, 357A, 1589–1601.
  • J. Quinta da Fonseca, E. C. Oliver, P. S. Bate and P. J. Withers: ‘Evolution of intergranular stresses during in-situ straining of IF steel with different grain sizes’, Mater. Set Eng. A, 2006, A437, 26–32.
  • K. J. Hemker and W. N. Sharpe, Jr: 'Microscale characterization of mechanical properties', Annu. Rev. Mater. Res., 2007, 37, 93–126.
  • D. S. Gianola and C. Eberl: ‘The micro- and nanoscale tensile testing of materials’, JOM, 2009, 61, (3), 24–35.
  • W. N. Sharpe, Jr (ed.): ‘Springer handbook of experimental solid mechanics’; 2008, Berlin, Springer Publication.
  • J. Eaton-Evans, J. M. Dulieu-Barton, R. L. Burguete (eds.): ‘Modern stress and strain analysis — a state of the art guide to measurement techniques’: 2009, London, BSSM/Eureka Publication.
  • A. LaVan and W. N. Sharpe: ‘Tensile testing of microsamples’, Exp. Mech., 1999, 39, (3), 210–216.
  • M. A. Sutton and W. J. Wolters: ‘Determination of displacement using an improved digital image correlation method’, Image Vision Comput., 1983, 1, (3), 133–139.
  • T. C. Chu, W. F. Ranson, M. A. Sutton and W. H. Peters: ‘Applications of digital image correlation techniques to experi-mental mechanics’, Exp. Mech., 1985, 25, (3), 232–244.
  • M. A. Sutton, J. J. Orteu and H. Schreier: ‘Image correlation for shape, motion and deformation measurements: basic concepts, theory and applications’: 2009, New York, Springer Publications.
  • B. Peterson, P. Collins and H. Fraser: ‘On the use of a sub-scale thermomechanical simulator to obtain accurate tensile properties of (α +β) and β-processed Ti-6A1-4V’, Mater. Set Eng. A, 2009, A513—A514, 357–365.
  • B. Pan, H.-M. Xie, B.-Q. Xu and F.-L. Dai: ‘Performance of sub-pixel registration algorithms in digital image correlation’, Meas. ScL Technol., 2006, 17, 1615–1621.
  • LaVision Strainmaster Davis 7.0 user manual, November 2004.
  • A. P. Reynolds and F. Duvall: ‘Digital image correlation for determination of weld and base metal constitutive behaviour’, Am. Weld. Soc. Weld. 1, 1999, 78, (10), 55–360.
  • M. Kartal, R. Molak, M. Turski, S. Gungor, M. E. Fitzpatrick and L. Edwards: ‘Determination of weld metal mechanical properties utilising novel tensile testing methods’, AppL Mech. Mater., 2007, 7, (8), 127–132
  • J. Quinta da Fonseca, P. Ryan, M. Preuss and P. J. Withers: ‘Mechanical property mapping using image correlation and electro-nic speckle interferometry’, Appl. Mech Mater., 2004, 1-2, 147-152
  • M. Sachtleber, Z. Zhao and D. Raabe: ‘Experimental investigation of plastic grain interaction’, Mater. Set Eng. A, 2002, A336, 81-87
  • J. Kang, Y. Ososkov, J. D. Embury and D. S. Wilkinson: ‘Digital image correlation studies for microscopic strain distribution and damage in dual phase steels’, Scr. Mater., 2007, 56, 999–1002.
  • B. Wattrisse, A. Chrysochoos, J. M. Murraciole and M. Némoz-Galliard: ‘Analysis of strain localization during tensile tests by digital image correlation’, Exp. Mech., 2001, 41, 29–39.
  • J. Zdunek, T. Brynk, J. Mizera, Z. Pakiela and K. J. Kurzydlowski: ‘Digital image correlation investigation of Portevin-Le Chatelier effect in an aluminium alloy’, Mater. Charact., 2008, 59, 1429–1433.
  • R. Moulart, R. Rot mat, F. Pierron and G. Lérondal: ‘Development of full field displacement measurement techniques at the microscale and application to the study of strain fields in a tensile steel specimen’, AppL Mech. Mater., 2007, 7-8, 181–186.
  • F. Lagattu, F. Bridier, P. Villechaise and J. Brillaud: ‘In-plane strain measurements on a microscopic scale by coupling digital image correlation and an in situ SEM technique’, Mater. Charact., 2006, 56, 10–18.
  • H. Jiang, F. A. Garcia-Pastor, D. Hu, X. Wu and M. H. Loretto: ‘Characterization of microplasticity in TiAl-based alloys’, Acta Mater., 2009, 57, 1357–1366.
  • Z. Q. Guo, H. M. Xie, B. C. Liu, B. Pan, P. W. Chen, Q. M. Zhang and F. L. Huang: ‘Digital image correlation study on micro-crystal of poly-crystal aluminum specimen under tensile load through SEM’, Key Eng. Mater., 2006, 326/328, Part 1, 155–158.
  • Y. H. Zhao, Y. Z. Guo, Q. Wei, T. D. Topping, A. M. Dangelewicz, Y. T. Zhu, T. G. Langdon and E. J. Lavernia: ‘Influence of specimen dimensions and strain measurement methods on tensile stress—strain curves’, Mater. ScL Eng. A, 2009, A525, 68–77.
  • A. Molotnikov, R. Lapovok, C. H. J Davies, W. Cao and Y. Estrin: ‘Size effect on the tensile strength of fine-grained copper’, Scr. Mater., 2008, 59, 1182–1185.
  • C. Keller, M. Rachik and E. Hug: ‘Influence of the number of grains per thickness on strain hardening and process of nickel polycrystals’, Met. Form., 2008, 2, 176–182.
  • D. Canadinc, H. Sehitoglu, H. J. Maier and P. Kurath: ‘On the incorporation of length scales associated with pearlitic and bainitic microstructures into a visco-plastic self-consistent model’, Mater. ScL Eng. A, 2008, A485, 258–271.
  • D. Kiener, W. Grosinger and G. Dehm: ‘On the importance of sample compliance in uniaxial microtesting’, Scr. Mater., 2009, 60, 148–151.
  • C. Keller, E. Hug and D. Chateigner: ‘On the origin of the stress decrease for nickel polycrystals with few grains across the thickness’, Mater. ScL Eng. A, 2009, A500, 207–215.
  • U. Ceyhan, M. Horstmann and B. Dogan: ‘High temperature cross-weld characterisation of steel weldments by microtensile Testing’, Mater. High Temp., 2006, 23, (3/4), 223–243.
  • W. N. Sharpe, Jr: ‘Tensile testing of MEMS materials at high temperatures’, Appl Mech. Mater., 2005, 3-4, 59–64.
  • J. P. M. Hoefnagels, P. J. M. Janssen, Th. H. de Keijser and M. G. D. Geers: ‘First order size effects in the mechanics of miniaturized components’, Appl Mech. Mater., 2008, 13-14, 183–192.
  • R. Molak, M. Kartal, Z. Pakiela, W. Manaj, M. Turski, S. Hiller, S. Gungor, L. Edwards and K. J. Kurzydlowski: ‘Use of micro tensile test samples in determining the remnant life of pressure vessel steels’, AppL Mech. Mater., 2007, 7, (8), 187–194.
  • A. Griffiths, W. Nimmo, B. Roebuck, G. Hinds and A. Turnbull: ‘A novel approach to characterising the mechanical properties of super martensitic 13Cr stainless steel welds’, Mater. ScL Eng. A, 2004, A384, 83–91.
  • Y. Yang, N. Yao, W. O. Soboyejo and C. Tarquinio: ‘Deformation and fracture in micro-tensile tests of freestanding electrodeposited nickel thin films’, Scr. Mater., 2008, 58, 1062–1065.
  • C. Keller, E. Hug and D. Chateigner: ‘On the origin of the stress decrease for nickel polycrystals with few grains across the thickness’, Mater. ScL Eng. A, 2009, A500, 207–215.
  • V. Karthik, K. Laha, P. Parameswaran, K. V. Kasiviswanathan and B. Raj: ‘Small specimen test techniques for estimating the tensile property degradation of mod 9Cr-1 steel on thermal ageing’, J. Test. Eva, 2007, 35, (4), 438–448.
  • B. M. Grainger, M. T. Jones, M. R. Lovell, T. M. Link, H. R. Piehler and R. D. Marangoni: ‘Investigation of alternative methods for characterizing the yield strength of tubular steel products’, Steel Res. Int. Spec. Edn, 2008, 2, 347–355.
  • B. Roebuck, M. G. Gee, J. D. Lord and L. N. McCartney: ‘Miniature thermal cycling tests on aluminium alloy metal matrix composites’, Mater. Set Technol, 1998, 14, 1001–1008.
  • B. Roebuck, L. P. Orkney and J. D. Lord: ‘Validation of a miniature tensile strength measurement system’, Proc. ASTM 4th Symp. on ‘Small specimen test techniques’, (ed. M. A. Sokolov et al), Reno, NV, USA, January 2001, ASTM, 234–250.
  • B. Roebuck, D. C. Cox and R. C. Reed: ‘An innovative device for the mechanical testing of miniature specimens of the superalloys’, Proc. Conf. on 'Superalloy', (ed. K A Green et al), Seven Springs, NC, USA, September 2004, TMS, 523–528.
  • B. Roebuck, M. S. Loveday and M. Brooks: ‘Characterisation of Nimonic 90 by the use of miniaturised multiproperty mechanical and physical tests’, Int. J. Fatigue, 2008, 30, 345–351.
  • M. S. Loveday, G. J. Mahon, B. Roebuck, A. J. Lacey, E. J. Palmiere, C. M. Sellars and M. R. van der Winden: ‘Measuring flow stress in hot plane strain compression tests’, Mater. High Temp., 2006, 23, (2), 85–118.
  • C. D. Ingelbrecht and M. S. Loveday: ‘The certification of ambient temperature tensile properties of a reference material for tensile testing according to EN 10002-1, CRM 661’, BCR report EUR 19589 EN, 2000.
  • T. Narutani and J. Takamura: ‘Grain size strengthening in terms of dislocation density measured by resistivity’, Acta Metall. Mater., 1991, 39, (8), 2037–2049.
  • B. Roebuck, L. Brown, J. Banks, R. Brooks and M. Evans: ‘Miniaturised testing’, NPL report DEPC-MPE 042, 2007.
  • R. W. Evans and M. Evans: ‘Numerical modelling the small disk creep test’, Mater. ScL TechnoL, 2006, 22, 1155–1162.
  • M. Evans and D. Wang: ‘Optimising the sensitivity of the small punch test to damage and test conditions’, J. Strain Anal. Eng. Design, 2007, 42, (5), 389–409.
  • M. Evans and D. Wang: ‘Stochastic modelling of the small disc creep test’, Mater. ScL TechnoL, 2007, 23, (8), 883–892.
  • V. Bicego, P. Cerutti, J. Foulds, R. Hurst and K. Matocha: ‘Small punch test method for metallic materials, part A: a code of practice for small punch creep testing’, CEN CWA21 draft-7: 2005.
  • K. Matocha, M. Abendroth and J. Foulds: ‘Small punch test method for metallic materials, part B: a code of practice for small punch testing for tensile and fracture behaviour’, CEN CWA21 draft-7: 2005.
  • R. Lacalle, J. A. Alvarez and F. Gutierrez-Solana: ‘Analysis of key factors for the interpretation of small punch test results’, Fatigue Fract. Eng. Mater. Struct., 2008, 31, 841–849.
  • I. Nonaka, A. Kanaya, S. Komazaki and K. Kobayashi: ‘Activities of micro sample creep testing working group in Japan’, Proc. 2nd Conf. on ‘Creep and fracture in high temperature components’, (ed. I. A. Shibli and S. R. Holdsworth), Zurich, Switzerland, April 2009, ECCC, 1097–1101.
  • G. D. Quinn, E. R. Fuller, D. Xiang, A. Jillavenkatessa, L. Ma, D. Smith and J. Beall: ‘A novel test method for measuring mechanical properties at the small scale: the theta specimen’, Ceram. Eng. Sci. Proc., 2005, 26, (2), 117–126.
  • G. D. Quinn: 'Fractographic analysis of very small theta specimens', Key Eng. Mater., 2009, 409, 201–208.
  • F. I. Baratta, G. D. Quinn and W. T. Matthews: ‘Errors associated with flexure testing of brittle materials’, Technical report TR 87-35, US Army Materials Technology Laboratory, Watertown, Mass., USA, 1987.
  • G. D. Quinn and R. Morrell: ‘Design data for engineering ceramics: a review of the flexure test’, J. Am. Ceram. Soc., 1991, 74, (9), 2037–2066.
  • T. Lube, M. Manner and R Danzer: ‘The miniaturisation of the 4-point-bend test’, Fatigue Fract. Eng. Mater. Struct., 1997, 20, (11), 1605–1616.
  • G. D. Quinn and J. J. Swab: ‘Elastic modulus by resonance of rectangular prisms: corrections for edge treatments’, J. Am. Ceram. Soc., 2000, 83, (2), 317–320.
  • G. D. Quinn: ‘Weibull strength scaling for standardized rectangular flexure specimens’, J. Amer. Ceram. Soc., 2003, 86, (3), 508–510.
  • M. Auhorn, T. Beck, V. Schulze and D. Löhe: ‘Quasistatic and cyclic testing of specimens with high aspect rations produced by microocasting and micro powder injection moulding', Microsys. TechnoL, 2002, 8, 109–112.
  • M. Muller, J. Rogner, B. Okolo, W. Bauer and H.-J. Ritzhaupt-Kleissl: ‘Factors influencing the mechanical properties of mould zirconia micro parts’, Proc. 10th Euroceramics Conf., (ed. J. G. Heinrich and C. Aneziris), Baden-Baden, Germany, June 2007, Goner Verlag, 1291–1296.
  • G. W. Hollenberg, G. R. Terwilliger and R. S. Gordon: ‘Calculation of stresses and strains in four-point bending creep tests’, J Am. Ceram. Soc., 1971, 54, (4), 196–199.
  • T.-J. Chuang: ‘Estimation of power-law creep parameters from bend test data’, J. Mater. Sci., 1986, 21, (1), 165–175.
  • R. Morrell: ‘Biaxial flexural strength testing of ceramic materials’, Good practice guide no. 12, National Physical Laboratory, Teddington, UK, 1998.
  • R. Kao, N. Perone and W. Capps: ‘Large deflection solution of the coaxial-ring-circular- glass-plate flexure problem’, J. Am. Ceram. Soc., 1971, 54, (11), 566–571.
  • J. Kiibler, R. Primas and B. Gut: ‘Mechanical strength of thermally aged and cycled thin zirconia sheets’, in ‘Advances in science and technology 3B, ceramics: charting the future’, (ed. P. Vincenzini), 923-928; 1995, Faenza, Techna Srl.
  • J. B. Wachtman, Jr, W. Capps and J. Mandel: ‘Biaxial flexure tests of ceramic substrates’, J. Mater., 1972, 7, 188–194.
  • A. F. Kirstein and R. M. Woolley: ‘Symmetrical bending of thin circular elastic plates on equally spaced supports’, J. Res. NBS C, 1967, 71C, 1–10.
  • A. Börger, P. Supancic and R. Danzer: ‘The ball on three balls test for strength testing of brittle discs-stress distribution in the disc’, J. Eur. Ceram. Soc., 2002, 22, (8), 1425–1436.
  • A. Börger, P. Supancic and R. Danzer: ‘The ball on three balls test for strength testing of brittle discs, part II: analysis of possible errors in the strength determination’, J. Eur. Ceram. Soc., 2004, 24, 2917–2928.
  • R. Danzer: ‘Some notes on the correlation between fracture and defect statistics: are Weibull statistics valid for very small specimens?’ J. Eur. Ceram. Soc., 2006, 26, (15), 3043–3049.
  • W. Harrer, R. Danzer, P. Supancic and T. Lube: ‘The ball on three balls test: strength testing of specimens of different sizes and geometries’, Proc. 10th Eur. Ceram. Soc. Conf., (ed. J. G. Heinrich and C. Aneziris), 1271-1275; 2007, Baden-Baden, Göller Verlag.
  • R. Danzer and P. Supancic: ‘Fracture statistics of small speci-mens’, Proc. 9th Int. Symp. on ‘Ceramics materials and components for energy and environmental applications’, Shanghai, China, November 2008, to be published.
  • X. Y. Zhao, P. E. Irving and A. Cini: ‘Hardness environments around fatigued scratches in clad and unclad 2024 T351 aluminium alloy’, Mater. Sci. Eng. A, 2009, A500, 16–24.
  • B. Roebuck and E. A. Almond: ‘Equivalence of indentation and compression creep tests on a WC/Co hard metal’, J. Mater. Sci. Lett., 1982, 12, 519–521.
  • T. H. Hyde and W. Sun: ‘Evaluation of conversion relationships for impression creep tests at elevated temperature’, Int. J. Pressure Vessels Pip., 2009, 86, 757–763.
  • T. H. Hyde, K. A. Yehia and A. A. Becker: ‘Interpretation of impression creep data using a reference stress approach’, Int. J. Mech. Sci., 1993, 35, (6), 451–462.
  • T. H. Hyde, W. Sun and A. A. Becker: ‘Analysis of the impression creep test method using a rectangular indenter for determining the creep properties in welds’, Int. J. Mech. Sci., 1996,38, (10), 1089–1102.
  • T. H. Hyde and W. Sun: ‘Multi-step load impression creep tests for a 0.5Cr-0.5Mo-0•25V steel at 565°C’, Strain, 2001,37, (3), 99–103.
  • C.-H. Hsueh, P. Miranda and P. F. Becker: ‘An improved correlation between impression and uniaxial creep’, J. AppL Phys., 2006, 99, 113513–113520.
  • W. Sun, T. H. Hyde and S. J Brett: ‘Application of impression creep data in life assessment of power plant materials at high temperatures’, J. Mater. Design AppL, 2008, 222, (3), 175–182.
  • J. C. M. Li: ‘Impression creep and other localized tests’, Mater. Sci. Eng. A, 2002, A322, 23–42.
  • L. Peng, F. Yang, J.-F. Nie and J. C. M. Li: ‘Impression creep of a Mg-82n-4A1-0 5Ca alloy’, Mater. Set Eng. A, 2005, A410, 42–47.
  • M. Maldini and V. Lupine: ‘Modelling creep of single crystal CM186LC alloy under constant and variable loading’, Mater. Sci. Eng. A, 2005, A408, 169–175.
  • D. L. Marriott and R. K. Penny: ‘Strain accumulation and rupture during creep under variable uniaxial tensile loading’, J. Strain Anal, 1973, 8, (3), 151–159.
  • W. A. Grell, G. H. Niggeler, M. E. Groskreutz and P. J. Laz: ‘Evaluation of creep damage accumulation models: considerations of stepped testing and highly stressed volume’, Fatigue Fract. Eng. Mater. Struct., 2007, 30, (8), 689–697.
  • B. Roebuck, M. S. Loveday and M. Brooks: NPL unpublished research.
  • B. Roebuck, M. S. Loveday and M. Brooks: ‘Characterisation of Nimonic 90 by the use of miniaturised multiproperty mechanical and physical tests’, Int. J. Fatigue, 2008, 30, 345–351.
  • C. H. Caceres, J. R. Griffiths, A. R. Pakdel and C. J. Davidson: 'Microhardness mapping and the hardness-yield strength relation-ship in high pressure diecast magnesium alloy', Mater. Set Eng. A, 2005, A402, 258–268.
  • R. W. Fonda and J. F. Bingert: 'Microstructural evolution in the heat-affected zone of a friction stir weld', Met. Trans. A, 2004, 35, (5), 1487–1499.
  • W. C. Oliver and G. M. Pharr: ‘An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments’, J. Mater. Res., 1992, 7, (6), 1564–1583.
  • J. Luo, J. Lin and T. A. Dean: ‘A study on the determination of mechanical properties of a power law material by its indentation force-depth curve’, Philos. Mag., 2006, 86, (19), 2881–2905.
  • J. Luo and J. Lin: ‘A study on the determination of plastic properties of metals by instrumented indentation using two sharp indenters’, Int. J. Solids Struct., 2007, 44, 5803–5817.
  • A. E. Giannakopoulos and P.-L. Larsson: ‘Analysis of pyramid indentation of pressure-sensitive hard metals and ceramics’, Mech. Mater., 1997, 25, 1–35.
  • K. Zeng, E. Söderlund, A. E. Giannakopoulos and D. J. Rowcliffe: ‘Controlled indentation: A general approach to determine mechanical properties of brittle materials’, Acta Mater., 1996,44, (3), 1127–1141.
  • J.-M. Collin, G. Mauvoisin, O. Bartier, R. ElAbdi and P. Pilvin: ‘Experimental evaluation of the stress—strain curve by continuous indentation using different indenter shapes’, Mater. Set Eng. A, 2009, A501, 140–145.
  • K. R. Trethewey, M. Wenman, P. Chard-Tuckey and B. Roebuck: ‘Correlation of meso and micro scale hardness measurements with the pitting of plastically deformed type 304L stainless steel’, Corros. Sci., 2008, 50, 1132–1141.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.