2,045
Views
52
CrossRef citations to date
0
Altmetric
Original Articles

Direct electrochemical conversion of metal oxides to metal by molten salt electrolysis: a review

Pages 195-212 | Received 15 Feb 2013, Accepted 18 May 2013, Published online: 11 Jan 2014

References

  • Abdelkader A. M., Daher A., Randa A., Abdelkareem A. and El-Kashif E.. 2007. Preparation of zirconium metal by the electrochemical reduction of zirconium oxide, Metall. Mater. Trans. B, 38B, (1), 35–44.
  • Abdelkader A. M. and Fray D. J.. 2012. Electro-deoxidation of hafnium dioxide and niobia-doped hafnium dioxide in molten calcium chloride, Electrochim. Acta, 64,10–16.
  • Abdelkader A. T., Tripuraneni Kilby K.., Cox A.. and Fray D. J.. 2013. DC voltammetry of electro-deoxidation of solid oxides, Chem. Rev., 113, (5), 2863–2886.
  • Abram T. and Ion S.. 2008. Generation-IV nuclear power: a review of the state of the science, Energy Policy, 36, 4323–4330.
  • Alexander D. T. L., Schwandt C. and Fray D. J.. 2011. The electro-deoxidation of dense titanium dioxide precursors in molten calcium chloride giving a new reaction pathway, Electrochim. Acta, 56, (9), 3286–3295.
  • Barnes L. A. and Williamson M. A.. 2008. Developments in electrolytic reduction: effect of rare earth oxides, Int. Pyroprocessing Research Conf.-2 (IPRC-2), Jeju Island, Republic of Korea.
  • Barnett R., Kilby K. T. and Fray D. J.. 2009. Reduction of tantalum pentoxide using graphite and tin-oxide-based anodes via FFC Cambridge process, Metall. Mater. Trans. B, 40B, (2), 150–157.
  • Benoit C., Serp J. and Fouletier J.. 2010. Electrochemical reduction of CeO2 in CaCl2-based salt as simulation of actinides processing, Int. Pyroprocessing Research Conf.-3 (IPRC-3), Dimitrovgrad, Russia.
  • Benoit C., Serp J. and Fouletier J.. 2011. Electrochemical reduction of cerium oxide to metal, Electrochim. Acta, 56, (7), 2771–2780.
  • Bhagat R., Jackson M., Inman D. and Dashwood R.. 2008. The production of biocompatible Ti-15Mo alloy from mixed oxide precursors via the FFC Cambridge process, J. Electrochem. Soc., 155, (6), E63–E69.
  • Bhagat R., Jackson M., Inman D. and Dashwood R.. 2009. Production of Ti-W alloys from mixed oxide precursors via the FFC Cambridge process, J. Electrochem. Soc., 156, (1), E1–E7.
  • Burheim O. S.. 2005. Electrowinning of iron from chloride melts, Diploma dissertation, Institutt for Material Technologi, Trondheim, Norway.
  • Burheim O. and Haarberg G. M.. 2010. Effects of inert anodes in the FFC Cambridge reduction of hematite, Miner. Process. Extr. Metall., 119, (2), C77–C81.
  • Bychkov A. V., Ishunin V. S. and Kormilitsyn M. V.. 2009. Reduction of uranium oxides with lithium in a lithium chloride melt, Radiokhimiya, 51, (5), 464–468.
  • Cai Z., Zhang Z., Guo Z. and Tang H.. 2012. Direct electrochemical reduction of solid vanadium oxide to metal vanadium at low temperature in molten CaCl2–NaCl, Int. J. Miner. Metall. Mater., 19, (6), 499–505.
  • Centeno-Sanchez R. L., Fray D. J. and Chen G. Z.. 2007. Study of the reduction of highly porous TiO2 precursors and thin TiO2 layers by the FFC-Cambridge process, J. Mater. Sci., 42, 7494–7501.
  • Chen G. Z.. 2013. The FFC Cambridge process for metal production: principle, practice and prospect, Proc. Third Int. Slag Valorization Symp., Leuven, Belgium, 217–233. http://slag-valorisation-symposium.eu/images/papers/s3_3_Chen.pdf
  • Chen G. Z. and Fray D. J.. 2002. Voltammetric studies of the oxygen-titanium binary system in molten calcium chloride, J. Electrochem. Soc., 149, (11), E455–E467.
  • Chen G. Z., Fray D. J. and Farthing T. W.. 2000. Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride, Nature, 407, (6802), 361–364.
  • Chen G. Z., Gordo E. and Fray D. J.. 2004. Direct electrolytic preparation of chromium powder, Metall. Mater. Trans. B, 35B, (2), 223–233.
  • Choi E. Y., Hur J. M., Choi I. K., Kwon S. G., Kang D. S., Hong S. S., Shin H. S., Yoo M. A. and Jeong S. M.. 2011. Electrochemical reduction of porous 17 kg uranium oxide pellets by selection of an optimal cathode/anode surface area ratio, J. Nucl. Mater., 418, (1–3), 87–92.
  • Choi E. Y., Kim J. K., Im H. S., Choi I. K., Na S. H., Lee J. W., Jeong S. M. and Hur J. M.. 2013. Effect of the UO2 form on the electrochemical reduction rate in a LiCl–Li2O molten salt, J. Nucl. Mater., 437, (1–3), 178–187.
  • Choi E. Y., Lee J. W., Park J. J., Hur J. M., Kim J. K., Jung K. Y. and Jeong S. M.. 2012. Electrochemical reduction behavior of a highly porous SIMFUEL particle in a LiCl molten salt, Chem. Engg. J., 207–208, 514–520.
  • Crowley G.. 2003. How to extract low-cost titanium, Adv. Mater. Processes, 161, 25–27.
  • Dring K.. 2010. Direct electrochemical reduction of titanium dioxide in molten salts, in Key engineering materials, (eds. Imam M. A., Froes F. H. and Dring K. F.), Vol. 436, 27–34, Switzerland, Trans Tech Publications.
  • Du J. H., Xi Z. P., Li Q. Y., Li Z. X. and Tang Y.. 2008. Preparation of Ti–Fe alloy by electro-deoxidation in molten salt, Rare Met. Mater. Eng., 37, (12), 2240–2243.
  • Fenn A. J., Cooley G., Fray D. J. and Smith L.. 2004. Exploiting FFC Cambridge process, Adv. Mater. Process., 162, 51–53.
  • Fray D. J. and Chen G. Z.. 2004. Reduction of titanium and other metal oxides using electro-deoxidation, Mater. Sci. Technol., 20, (3), 295–300.
  • Fray D. J., Farthing T. W. and Chen G. Z.. 1999. Removal of oxygen from metal oxides and solid solutions by electrolysis in a fused salt, International Patent WO 9,964,638.
  • Ge X., Wang X. and Seetharaman S.. 2009. Copper extraction from copper ore by electro-reduction in molten CaCl2–NaCl, Electrochim. Acta, 54, (18), 4397–4402.
  • Gibilaro M., Cassayre L., Lemoine O., Massot L., Dugne O., Malmbeck R. and Chamelot P.. 2011a. Direct electrochemical reduction of solid uranium oxide in molten fluoride salts, J. Nucl. Mater., 414, (2), 169–173.
  • Gibilaro M., Pivato J., Cassayre L., Massot L., Chamelot P. and Taxil P.. 2011b. Direct electro-reduction of oxides in molten fluoride salts, Electrochim. Acta, 56, (15), 5410–5415.
  • Glowacki B. A., Yan X. Y., Fray D., Chen G., Majoros M. and Shi Y.. 2002. Niobium based intermetallics as a source of high current/high magnetic field superconductors, Physica C, 372–376, (Part. 3), 1315–1320.
  • Goto T., Araki Y. and Hagiwara R.. 2006. Oxygen gas evolution on the boron-doped diamond electrode in molten chloride system, Electrochem. Sol. State Lett., 9, (2), D5–D7.
  • Gourishankar K. V., Peter A. M., Sheshadri H. N. and Viswanathan A.. 2011. Oxide-ion sensor for use in molten salt based electrochemical reduction process, U. S. Patent 2011/0108439 A1.
  • Gourishankar K. V., Redey L. and Williamson M.. 2002. Electrochemical reduction of metal oxides in molten salts, in Light Metals, (ed. Schneider W.), 1075–1082, Warrendale, PA, The Minerals, Metals and Materials Society.
  • Gupta C. K.. 2003. Chemical metallurgy: principles and practices, 359–399, Weinheim, Wiley-VCH Verlag GmbH & Co. KGaA.
  • Haarberg G. M.. 2009. Electrodeoxidation of solid Fe2O3 in molten CaCl2 to produce iron, 8th Int. Conf. on ‘molten slags, fluxes and salts’, Santiago, Chile.
  • Herrmann S. D. and Li S. X.. 2010. Separation and recovery of uranium metal from spent light water reactor fuel via electrolytic reduction and electrorefining, Nucl. Technol., 171, (3), 247–265.
  • Herrmann S. D., Li S. X., Sell D. A. and Westphal B. R.. 2007a. Electrolytic reduction of spent nuclear oxide fuel: effects of fuel form and cathode containment materials on bench-scale operations, Global 2007, 758–762, Boise, Idaho, American Nuclear Society.
  • Herrmann S., Li S. and Simpson M.. 2007b. Electrolytic reduction of spent light water reactor fuel bench scale experimental results, J. Nucl. Sci. Technol., 44, (3), 361–367.
  • Herrmann S. D., Li S. X., Simpson M. F. and Phongikaroon S.. 2006. Electrolytic reduction of spent nuclear oxide fuel as part of an integral process to separate and recover actinides from fission products, Sep. Sci. Technol., 41, (10), 1965–1983.
  • Hu D., Xiao W. and Chen G. Z.. 2013. Near-net-shape production of hollow titanium alloy components via electrochemical reduction of metal oxide precursors in molten salts, Metall. Mater. Trans. B, 44B, (2), 272–282.
  • Hur J. M., Choi I. K., Cho S. H., Jeong S. M. and Seo C. S.. (2007b). Preparation and melting of uranium from U3O8, J. Alloys Compd., 452, (1), 23–26.
  • Hur J. M., Jeong S. M. and Lee H.. 2010. Underpotential deposition of Li in a molten LiCl–Li2O electrolyte for the electrochemical reduction of U from uranium oxides, Electrochem. Comm., 12, (5), 706–709.
  • Hur J. M., Lee S. C., Jeong S. M. and Seo C. S.. (2007a). Electrochemical reduction of TiO2 in molten LiCl–Li2O, Chem. Lett., 36, (8), 1028–1029.
  • Inoue T.. 2002. Actinide recycling by pyroprocessing with metal fuel FBR for future nuclear fuel cycle system, Prog. Nucl. Energy, 40, (3–4), 547–554.
  • Jackson B., Jackson M., Dye D., Inman D. and Dashwood R.. 2008. Production of NiTi via the FFC Cambridge process, J. Electrochem. Soc., 155, (12), E171–E177.
  • Jeong S. M., Jung J. Y., Seo C. S. and Park S. W.. 2007. Characteristics of an electrochemical reduction of Ta2O5 for the preparation of metallic tantalum in a LiCl–Li2O molten salt, J. Alloys Compd., 440, (1–2), 210–215.
  • Jeong S. M., Park S. B., Hong S. S., Seo C. S. and Park S. W.. 2006. Electrolytic reduction of metallic uranium from U3O8 in a 20kg batch scale reactor, J. Radioanalytical. Nucl. Chem., 268, (2), 349–356.
  • Jeong S. M., Park B. H., Hur J. M., Seo C. S., Lee H. and Song K. C.. 2010. An experimental study on an electrochemical reduction of an oxide mixture in the advanced spent-fuel conditioning process, Nucl. Eng. Technol. 42, (2), 183–192.
  • Jeong S. M., Shin H. S., Cho S. H., Hur J. M. and Lee H. S.. 2009. Electrochemical behaviour of a platinum anode for reduction of Uranium oxide in a LiCl molten salt, Electrochim. Acta, 54, (26), 6335–6340.
  • Jeong S. M., Yoo H. Y., Hur J. M. and Seo C. S.. 2008. Preparation of metallic niobium from niobium pentoxide by an indirect electrochemical reduction in a LiCl–Li2O molten salt, J. Alloys Compd., 452, (1), 27–31.
  • Jiao S. and Fray D. J.. 2010. Development of an inert anode in electrowinning in calcium chloride-calcium oxide melts, Metall. Mater. Trans. B, 41B, (1), 74–79.
  • Kado Y., Goto T. and Hagiwara R.. 2008. Electrochemical behaviour of oxide ion in a LiCl–NaCl–CaCl2 eutectic melt, J. Electrochem. Soc., 155, (7), E85–E89.
  • KAERI 2012. PRIDE facility, KAERI Internal Report. Korea Atomic Energy Research Institute, Yuseong-gu, Daejeon, Korea.
  • Kar P.. 2007. Mathematical modeling of phase change electrodes with application to a novel titanium extraction process, PhD dissertation, University of California, Berkeley.
  • Karell E. J., Gourishankar K. V., Smith J. L., Chow L. S. and Redey L.. 2001. Separation of actinides from LWR spent fuel using molten-salt-based electrochemical processes, Nucl. Technol., 136, (3), 342–353.
  • Kilbi K. T., Jiao S. and Fray D. J.. 2010. Current efficiency studies for graphite and SnO2 based anodes for the electrodeoxidation of metal oxides, Electrochim. Acta, 55, (23), 7126–7133.
  • Kurata M., Inoue T., Serp J., Ougier M. and Glatz J. P.. 2004. Electrochemical reduction of MOX in LiCl, J. Nucl. Mater., 328, (2–3), 97–102.
  • Kurata M., Yahagi N., Kitawaki S., Nakayishi A. and Fukushima M.. 2008. Electrochemical reduction of MOX pellets in molten lithium chloride based on a practical operating condition, Nucl. Tech., 164, (3), 433–441.
  • Laidler J. J., Battles J. E., Miller W. E., Ackerman J. P. and Carls E. L.. 1997. Development of pyroprocessing technology, Prog. Nucl. Energy, 31, (1–2), 131–140.
  • Lebedev V. A., Sal’nikov V. I., Sizikov I. A. and Rymkevich D. A.. 2007. Mechanism and kinetics of process occurring at TiO2 cathode in CaCl2–CaO melt, Russ. J. Appl. Chem., 80, (9), 1503–1508.
  • Lee H.. 2010. Pyroprocessing technology development at KAERI, Int. Pyroprocessing Research Conf.-3, Dimitrovgrad, Russia.
  • Lee S. C., Hur J. M. and Seo C. S.. 2008. Silicon powder production by electrochemical reduction of SiO2 in molten LiCl–Li2O, J. Ind. Engg. Chem., 14, (5), 651–654.
  • Li G., Wang D. and Chen Z.. 2009. Direct reduction of solid Fe2O3 in molten CaCl2 by potentially green process, J. Mater. Sci. Technol., 25, (6), 767–771.
  • Li G., Wang D., Jin X. and Chen G. Z.. 2007. Electrolysis of solid MoS2 in molten CaCl2 for Mo extraction without CO2 emission, Electrochem. Comm., 9, (8), 1951–1957.
  • Lizuka M., Inoue T., Ougier M. and Glatz J. P.. 2007. Electrochemical reduction of (U, Pu) O2 in molten LiCl and CaCl2 electrolytes, J. Nucl. Sci. Technol., 44, (5), 801–813.
  • Lizuka M., Sakamura Y. and Inoue T.. 2006. Electrochemical reduction of (U-40Pu-5Np) O2 in molten LiCl electrolyte, J. Nucl. Mater., 359, (1-2), 102–113.
  • Ma M., Wang D., Wang W., Hu X., Jin X. and Chen G. Z.. 2006. Extraction of titanium from different titania precursors by the FFC Cambridge process, J. Alloys Compd, 420, (1–2), 37–45.
  • Meng F. and Lu H.. 2009. Direct electrochemical preparation of NbSi alloys from mixed oxide preform precursors, Adv. Engg. Mater., 11, (3), 198–201.
  • Metalysis. 2013. Available from: http://www.metalysis.com
  • Mohandas K. S. and Fray D. J.. 2004. FFC Cambridge process and removal of oxygen from metal-oxygen systems by molten salt electrolysis: an overview, Trans. Indian. Inst. Met., 57, (6), 579–592.
  • Mohandas K. S. and Fray D. J.. 2009. Electrochemical deoxidation of solid zirconium dioxide in molten calcium chloride, Metall. Mater. Trans. B, 40B, (5), 685–699.
  • Mohandas K. S. and Fray D. J.. 2011a. Influence of the physico-chemical characteristics of powder compacted metal oxide cathodes on the direct electro-deoxidation in molten calcium chloride medium, Proc. FRAY Int. Symp. on ‘Metals and Materials Processing in a Clean Environment’, Vol. 3, 219–238, Cancun, Mexico, Molten Salts & Ionic Liquids.
  • Mohandas K. S. and Fray D. J.. 2011b. Novel electrochemical measurements on direct electro-deoxidation of solid TiO2 and ZrO2 in molten calcium chloride medium, J. Appl. Electrochem., 41, (3), 321–336.
  • Mohandas K. S., Shakila L., Sanil N., Vishnu D. S. and Nagarajan K.. 2011a. Studies on the electrochemical deoxidation of uranium oxide in molten calcium chloride, Proc. FRAY Int. Symp. on ‘Metals and Materials Processing in a Clean Environment’, Vol. 3, 239–252, Cancun, Mexico, Molten Salts & Ionic Liquids.
  • Mohandas K. S., Shakila L., Sanil N., Vishnu D. S. and Nagarajan K.. 2011b. Galvanostatic Studies on the electro-deoxidation of solid titanium dioxide in molten calcium chloride, Proc. FRAY Int. Symp. on ‘Metals and Materials Processing in a Clean Environment’, Vol. 3, 253–268, Cancun, Mexico, Molten Salts & Ionic Liquids.
  • Nagarajan K., Reddy B. P., Ghosh S., Ravishankar G., Mohandas K. S., Kamatchi Mudali U., Kutty K. V. G., Kasi Viswanathan K. V., Anand Babu C., Kalyanasundaram P., Vasudeva Rao P. R. and Baldev R.. 2011. Development of pyrochemical reprocessing of spent metal fuels, Energy Procedia, 7, 431–436.
  • Nagesh R. V. S.. 2012. Titanium extraction technologies, 139–145, DRDO Technology Spectrum, Desidoc Pub., New Delhi.
  • Nohira T., Yasuda K. and Ito Y.. 2003. Pinpoint and bulk electrochemical reduction of insulating silicon oxide to silicon, Nature Mater., 2, (6), 397–401.
  • Ohta H., Inoue T., Sakamura Y. and Kinoshita K.. 2005. Pyroprocessing of light water spent fuels based on an electrochemical reduction technology, Nucl. Technol., 150, (2), 153–161.
  • Ojaghi-Ilkhchi M. and Assadi H.. 2012. Modelling of electro-reduction of porous oxides in molten salts, Comp. Mater. Sci., 53, (1), 1–5.
  • Oosthuizen S. J.. 2011. In search of low cost titanium: the Fray Farthing Chen (FFC) process, J. South. Afr. Inst. Min. Metall., 111, 1–6.
  • Örs T., Tan S., Öztürk T. and Karakaya I.. 2009. Synthesis of Fe-4·6 wt% B alloy via electro-deoxidation of mixed oxides, J. Mater. Sci., 44, (13), 3514–3519.
  • Park B. H., Hur J. M., Deo C. S. and Park S. W.. 2003. A study on the electrolytic reduction of UO2 in LiCl–Li2O melt, GLOBAL 2003, 994–998, New Orleans, LA, USA, American Nuclear Society.
  • Park W., Kim J. K., Hur J. M., Choi E. Y., Im H. S. and Hong S. S.. 2013. Application of a boron-doped diamond (BDD) electrode as an anode for electrolytic reduction of UO2 in Li2O–LiCl–KCl molten salt, J. Nucl. Mater., 432, (1–3), 175–181.
  • Park B. H., Lee H. H., Choung W. M., Hur J. M. and Seo C. S.. 2008. Development of an Electrochemical Reduction process in ACPF, Int. Pyroprocessing Research Conf.- 2 (IPRC-2), Jeju Island, Republic of Korea.
  • Park S. B., Park B. H., Jeong S. M., Hur J. M., Seo C. S., Choi S. H. and Park S. W.. 2006. Characteristics of an integrated cathode assembly for the electrolytic reduction of uranium oxide in a LiCl–Li2O molten salt, J. Radioanal. Nucl. Chem., 268, (2), 489–495.
  • Peng J. J., Jiang K., Xiao W., Wang D., Jin X. and Chen G. Z.. 2008. Electrochemical conversion of oxide precursors to consolidated Zr and Zr-2·5 Nb tubes, Chem. Mater., 20, (23), 7274–7280.
  • Peng J., Li G., Chen H., Wang D., Jin X. and Chen G. Z.. 2010. Cyclic voltammetry of ZrO2 powder in the metallic cavity electrode in molten CaCl2, J. Electrochem. Soc., 157, (1), F1–F9.
  • Pistorius P. C. and Fray D. J.. 2006. Formation of silicon by electro-deoxidation, and implications for titanium metal production, South. Afr. Inst. Min. Metall., 106, (1), 31–41.
  • Qiu G., Jiang K., Ma M., Wang D., Jin X. and Chen G. Z.. 2007. Roles of cationic and elemental calcium in the electro-reduction of solid metal oxides in molten calcium chloride, Z. Naturforsch., 62a, 292–302.
  • Qui G., Ma M., Wang D., Jin X., Hu X. and Chen G. Z.. 2005. Metallic cavity electrodes for investigation of powders: electrochemical reduction of NiO and Cr2O3 in molten CaCl2, J. Electrochem. Soc., 152, (10), E328–E336.
  • Roine A.. 2002. HSC Chemistry, Version 5.1, Outokumpu Research, Pori Oy, Finland.
  • Sakamura Y.. 2010. Solubility of Li2O in molten LiCl–MClx (M = Na, K, Cs, Sr or Ba) binary systems, J. Electrochem. Soc., 157, (9), E135–E139.
  • Sakamura Y.. 2011. Effect of alkali and alkaline-earth chloride addition on electrolytic reduction of UO2 in LiCl bath, J. Nucl. Mater., 412, (1), 177–183.
  • Sakamura Y. and Akagi M.. 2011. Pyrochemical reprocessing tests to collect uranium metal from simulated spent oxide fuel, Nucl. Technol., 179, (2), 220–223.
  • Sakamura Y., Kurata M. and Inoue T.. 2006. Electrochemical reduction of UO2 in molten CaCl2 or LiCl, J. Electrochem. Soc., 153, (3), D31–D39.
  • Sakamura Y. and Omori T.. 2008. Electrolytic reduction and electrorefining of uranium for developing the pyrochemical reprocessing of oxide fuels, Int. Pyroprocessing Research Conf.-2 (IPRC-2), Jeju Island, Republic of Korea.
  • Sanil N., Shakila L., Vishnu D. S., Mohandas K. S. and Nagarajan K.. 2011. Studies on the electro-deoxidation of CeO2 in the FFC Cambridge process, Abstracts of the 2nd Int. Conf. on ‘Advances in nuclear materials (ANM-2011)’, 151, Bhabha Atomic Research Centre, Mumbai.
  • Schwandt C., Alexander D. T. L. and Fray D. J.. 2009.The electro-deoxidation of porous titanium dioxide precursors in molten calcium chloride under cathodic potential control, Electrochim. Acta, 54, (14), 3819–3829.
  • Schwandt C., Doughty G. R. and Fray D. J.. 2010. FFC Cambridge process for titanium metal winning, Key Engineering Materials, Vol. 436, 13–25, Trans Tech Publications, Switzerland.
  • Schwandt C. and Fray D. J.. 2005. Determination of the kinetic pathway in the electrochemical reduction of titanium dioxide in molten calcium chloride, Electrochim. Acta, 51, (1), 66–76.
  • Schwandt C. and Fray D. J.. 2007. The electrochemical reduction of chromium sesquioxide in calcium chloride under cathodic control, Z. Naturforsch., 62a, 655–670.
  • Seo C. S., Jeong S. M., Park S. B., Jung J. Y., Park S. W. and Kim S. H.. 2006a. Preparation of tantalum powder from Ta2O5 by an electrochemical reduction in an LiCl–Li2O molten salt system, J. Chem. Engg. Jpn., 39, (1), 77–82.
  • Seo C. S., Park S. B., Park B. H., Jung K. J., Park S. W. and Kim S. H.. 2006b. Electrochemical study on the reduction mechanism of uranium oxide in a LiCl–Li2O molten salt, J. Nucl. Sci. Technol., 43, (5), 587–595.
  • Sundaram C. V. and Gupta C. K.. 1984. Growth of research and development in rare metals extraction in India, Bull. Mater. Sci., 6, (5), 901–922.
  • Tripathy P. K., Gauthier M. and Fray D. J.. 2007. Electrochemical deoxidation of titanium foam in molten calcium chloride, Metall. Mater. Trans. B, 38B, (6), 893–900.
  • Usami T., Kurata M., Inoue T., Sims H. E., Beetham S. A., Jenkins J. A.. 2002. Pyrochemical reduction of uranium dioxide and plutonium dioxide by lithium metal, J. Nucl. Mater., 300, (1): 15–26.
  • Vishnu D. S., Sanil N., Shakila L., Mohandas K. S. and Nagarajan K.. 2010. Galvanostatic electrodeoxidation of niobium pentoxide in molten calcium chloride medium, Proc. DAE-BRNS 3rd Int. Symp. on ‘Materials Chemistry, Trombay, Mumbai, Bhabha Atomic Research Centre, 135.
  • Vishnu D. S., Sanil N., Shakila L., Mohandas K. S. and Nagarajan K.., (2012a). Preliminary results on the role of calcium during electro-reduction of solid oxides in molten calcium chloride medium, Proc. DAE-BRNS Biennial Symp. on ‘Emerging trends in separation science and technology (SESTEC-2012)’, Board of Research in Nuclear Sciences (BRNS) and Association of Separation Scientists and Technologists (ASSET), Vile Parle, Mumbai, India, 166.
  • Vishnu D. S., Sanil N., Murugesan N., Shakila L., Ramesh C., Mohandas K. S. and Nagarajan K.., (2012b). Determination of the extent of reduction of dense UO2 cathodes from direct electrochemical reduction studies in molten chloride medium, J. Nucl. Mater., 427, (1–3), 200–208.
  • Vishnu D. S., Sanil N., Shakila L., Pannerselvam G., Sudha R., Mohandas K. S. and Nagarajan K.. 2013a. A study of the reaction pathways during electrochemical reduction of dense Nb2O5 pellets in molten CaCl2 medium, Electrochim. Acta, 100, 51–62.
  • Vishnu D. S., Sanil N., Pannerselvam G., Sudha R., Mohandas K. S. and Nagarajan K.. 2013b. Mechanism of direct electrochemical reduction of solid UO2 to uranium metal in CaCl2–48 mol% NaCl melt, J. Electrochem. Soc., 160, (9): D394–D402.
  • Vishnu D. S., Sanil N., Pannerselvam G., Mahato S. K., Soja K. V., Mohandas K. S. and Nagarajan K.. 2013c. Factors influencing the direct electrochemical reduction of UO2 pellets to uranium metal in CaCl2-48 mol% NaCl melt, J. Electrochem. Soc., 160, (11): D583–D592.
  • Wade W. Z. and Wolf T.. 1969. Preparation of massive plutonium metal directly from its oxides, J. Nucl. Sci. Technol., 6, (7), 402–407.
  • Wang D., Qiu G., Jin X., Hu X. and Chen G. Z.. 2006. Electrochemical metallization of solid terbium oxide, Angew. Chem. Int. Ed., 45, (15), 2384–2388.
  • Wood A. J. M., Copcutt R. C., Chen G. Z. and Fray D. J.. 2003. Electrochemical fabrication of nickel–manganese–gallium alloy powder, Adv. Engg. Mater., 5, (9), 650–653.
  • Wu T., Jin X., Xiao W., Hu X., Wang D. and Chen G. Z.. 2007. Thin pellets: Fast electrochemical preparation of capacitor tantalum powders, Chem. Mater.,19, (2), 153–160.
  • Wu T., Xiao W., Jin X., Liu C., Wang D. and Chen G. Z.. 2008. Computer-aided control of electrolysis of solid Nb2O5 in molten CaCl2, Phys. Chem. Chem. Phys., 10, (13), 1809–1818.
  • Xie H., Zhang H., Zhai Y., Wang J. and Li C.. 2009. Al preparation from solid Al2O3 by direct electrochemical deoxidation in molten CaCl2–NaCl at 550°C, J. Mater. Sci. Technol., 25, (4), 459–461.
  • Xu Q., Deng L., Wu Y. and Ma T.. 2005. A study of cathode improvement for electrodeoxidation of Nb2O5 in a eutectic CaCl2–NaCl melt at 1073 K, J. Alloys Compd., 396, (1–2), 288–294.
  • Yan X. Y. and Fray D. J.. 2002. Production of niobium powder by direct electrochemical reduction of solid in a eutectic melt, Metall. Mater. Trans. B, 33B, (5), 685–693.
  • Yan X. Y. and Fray D. J.. 2009a. Direct electrolytic reduction of solid alumina using calcium chloride-alkali chloride electrolytes, J. Appl. Electrochem., 39, (8), 1349–1360.
  • Yan X. Y. and Fray D. J.. 2009b. Synthesis of niobium aluminides by electro-deoxidation of oxides, J. Alloys Compd., 486, (1–2), 154–161.
  • Yin H., Gao L., Zhu H., Mao X., Gan F. and Wang D.. 2011. On the development of metallic inert anode for molten CaCl2–CaO system, Electrochim. Acta, 56, (9), 3296–3302.
  • Yong Z., Ma M., Wang D. H., Jiang K., Hu X. H., Jin X. B. and Chen G. Z.. 2006. Electrolytic reduction of mixed solid oxides in molten salts for energy efficient production of the TiNi alloy, Chin. Sci. Bull., 51, (20), 2535–2540.
  • Zhao B., Wang L., Dai L., Cui G., Zhou H. and Kumar R. V.. 2009. Direct electrolytic preparation of cerium/nickel hydrogen storage alloy powder in molten salt, J. Alloys Compd., 468, (1–2), 379–385.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.