2,854
Views
535
CrossRef citations to date
0
Altmetric
Original Article

Synthesis and consolidation of boron carbide: a review

, , &

References

  • F. Thevenot: ‘Boron carbide — a comprehensive review’, J. Eur. Ceram. Soc., 1990, 6, 205–225.
  • M. L. Bauccio: `ASM engineered materials reference book', 2nd edn; 1994, Materials Park, OH, ASM International.
  • S. R. Murthy: ‘Elastic properties of boron carbide’, J. Mater. Sci. Lett., 1985, 4, 603–605.
  • A. Lipp: ‘Boron carbide: production properties and application’, Technische Rundschau, 1965, 14, 28, 33 and 1966, 7.
  • V. I. Matkovich: ‘Boron and refractory borides’; 1977, Heidelberg/New York, Springler-Verlag Berlin.
  • D. Jianxin: 'Erosion wear of boron carbide ceramic nozzles by abrasive air jets', Mater. Sci. Eng. A, 2005, A408, 227-233.
  • A. Gatti, R. Cree, J. B. Higgins and E. Feingold: ‘Boron carbide continuous filaments’, Technical report. Jul 64—Jun 65, Philadelphia, PA, Missile and Space Div., General electric Co., 1965, available at: http://www.ntis.gov/
  • Y. Chen, Y. W. Chung and S. Y. Li: ‘Boron carbide and boron carbonitride thin films as protective coatings in ultra-high density hard disk drives’, Surf Coat. Technol, 2006, 200, 4072–4077.
  • K. E. Lee, J. Y. Lee, M. J. Park, J. H. Kim, C. B. Lee and C. O. Kim: ‘Preparation of boron carbide thin films for HDD protecting layer’, J. Magn. Magn. Mater., 2004, 272–276, 2197-2199.
  • P. Dunner, H. J. Heuvel and M. Horle: ‘Absorber materials for control rod systems of fast breeder reactors’, J. Nucl. Mater., 1984, 124, 185–194.
  • C. Dominguez, N. Cocuaud, D. Drouan, A. Constant and D. Jacquemain: ‘Investigation on boron carbide oxidation for nuclear reactor safety: experiments in highly oxidizing conditions’, J. Nucl. Mater., 2008, 374, 473–481.
  • N. Seiler, F. Bertrand, O. Marchand, G. Repetto and S. Ederli: ‘Investigations on boron carbide oxidation for nuclear reactors safety — general modeling for ICARE/CATHARE code applica-tions’, Nucl. Eng. Design, 2008, 238, 820–836.
  • A. Riyas, K. Divan, M. Alagon and P. Mohanakrishnan: ‘A new physics design of control safety rods for prototype fast breeder reactor’, Ann. Nucl. Energ., 2008, 35, 1484–1491.
  • D. Emin and T. L. Aselage: ‘A propeosed boron-carbide-based solid-state neutron detector’, J. Appl. Phys., 2005, 97, 013529.1-013529.3
  • O. Gebhardt and D. Gavillet: ‘SIMS imaging analyses of in-reactor irradiated boron carbide control rod samples’, J. Nucl. Mater., 2000, 279, 368–371.
  • http://www.iaea.org/inisnkm/nkm/aws/fnss/fulltext/ 0884_15.pdf
  • V. D. Risovany, A. V. Zakharov, E. P. Klochkov, A. G. Osipenko, N. S. Kosuling and G. I. Mikhailichenko: ‘Reprocessing of the irradiated boron carbide enriched by boron-10 isotope and its reuse in the control rods of the fast breeder reactors’, Proc. Techn. Committ. Meet. on ‘absorber materials, control rods and designs of backup reactivity shutdown systems for breakeven cores and burner cores for reducing plutonium stockpiles’, Obninsk, Russia, July 1995, International Atomic Energy Agency, IAEA-TECDOC--884, Vols. 3-7, 214-219.
  • R. Jimbou, M. Saidoh, K. Nakamura, M. Akiba, S. Suzuki, Y. Gotoh, Y. Suzuki, A. Chiba, T. Yamaki, M. Nakagawa, K. Morita and B. Tsuchiya: ‘New composite composed of boron carbide and carbon fiber with high thermal conductivity for first wall’, J. Nucl. Mater., 1996, 233-237, 781-786.
  • P. Valentine, P. W. Trester, J. Winter, J. Linke, R. Duwe, E. Wallura and V. Philips: ‘Boron carbide based coatings on graphite for plasma-facing components’, J. Nucl. Mater., 1994, 212–215, 1146-1152.
  • R. Jimbou, K. Kodama, M. Saidoh, Y. Suzuki, M. Nakagawa, K. Morita and B. Tsuchiya: 'Thermal conductivity and retention characteristics of composites made of boron carbide and carbon fibers with extremely high thermal conductivity for first wall armour', J Nucl. Mater., 1997, 241–243, 1175-1179
  • J. G. V. D. Laan, G. Schenedecker, E. V. V. Osch, R. Duwe and J. Linke: ‘Plasma sprayed boron carbide coating for first wall protection’, J. Nucl. Mater., 1994, 211, 135–140.
  • D. Gosset and B. Provot: ‘Boron carbide as a potential inert matrix: an evaluation’, Frog. Nucl. Energy, 2001, 38, (3-4), 263–266.
  • M. W. Mortensen, P. G. Sorensen, O. Bjorkdahl, M. R. Jensen, H. J. G. Gundersen and T. Bjornholm: ‘Preparation and characterization of boron carbide nanoparticles for use as a novel agent in T cell-guided boron neutron capture therapy’, AppL Radiat. Isotopes, 2006, 64, 315–324.
  • S. Sasaki, M. Takeda, K. Yokoyama, T. Miura, T. Suzuki, H. Suematsu, W. Jiang and K. Yatsui: ‘Thermoelectric properties of boron carbide thin film and thin film based thermoelectric device fabricated by intense-pulsed ion beam evaporation’, ScL Technot Adv. Mater., 2005, 6, 181–184.
  • S. Lee and J. Mazurowski: ‘Characterization of boron carbide thin films fabricated by plasma enhanced chemical vapour deposition from boranes’, J. AppL Phys., 1992, 72, (10), 4925–4932.
  • M. Bouchacoart and F. Thevenot: ‘The correlation between the thermoelectric properties and stoichiometric properties and stoichiometry in the boron carbide phase B4C-B10.5C’, J. Mater. ScL, 1985, 20, 1237–1247.
  • H. Zhao, Y. He and Z. Jin: ‘Preparation of zirconium boride powder’, J. Am. Ceram. Soc., 1995, 78, (9), 2534–2536.
  • C. Subramanian, T. S. R. Ch. Murthy and A. K. Sun: ‘Synthesis and consolidation of titanium diboride’, Int. J. Refract. Met. Hard Mater., 2007, 25, 345–350.
  • T. S. R. Ch. Murthy, B. Basu, R. Balasubramanian, A. K. Sufi, C. Subramanian and R. K. Fotedar: ‘Processing and properties of TiB2 with MoSi2 sinter additive: a first report’, J. Am. Ceram. Soc., 2006, 89, (1), 131–138.
  • C. C. Klepper: `Sintered boron as high-strength lightweight structural material for aerospace vehicles', available at: http:// optics.nasa.gov/tech.days/tech.days.2005/
  • D. Emin: ‘Unusual properties of icosahedral boron-rich solids’, J. Solid State Chem., 2006, 179, 44–51.
  • M. Bouchacourt and F. Thevenot: ‘The properties and structure of the boron carbide phase’, J. Less Comm. Met., 1981, 82, 227–235.
  • M. Bouchacourt and F. Thevenot: ‘Analytical investigations in the BC system’, J. Less Comm. Met., 1981, 82, 219–226.
  • M. Bouchacourt and F. Thevenot: ‘The melting of boron carbide and the homogeneity range of the boron carbide phase’, J. Less Comm. Met., 1979, 67, 327–331.
  • D. Gosset and M. Colin: ‘Boron carbides of various compositions: an improved method for x-ray characterisation’, J. Nucl. Mater., 1991,183, 161–173.
  • K. A. Schwetz and P. Karduck: ‘Investigations in the boron carbon system with the aid of electron probe microanalysis’, J. Less Comm. Met., 1991, 175, 1–11.
  • M. Beauvy: `Stoichiometric limits of carbon-rich boron carbide phases', J. Less Comm. Met., 1983, 90, 169–175.
  • R. Lazzari, N. Vast, J. M. Besson, S. Baroni and A. D. Corso: ‘Atomic structure and vibrational properties of icosahedral B4C boron carbide’, Phys. Rev. Lett., 1999, 83, (16), 3230–3233.
  • Y. Feng, G. T. Seidler, J. O. Cross, A. T. Macrander and J. J. Rehr: ‘Role of inversion symmetry and multiple effects in non-resonant X-ray raman-scattering from icosahedral B4C’, Phys. Rev. B, 2006, 69B, 125402-1-8.
  • D. R. Tallant, T. L. Aselage, A. N. Campbell and D. Emin: ‘Boron carbide structure by Raman spectroscopy’, Phys. Rev. B, 1989, 40B, (8), 5649–5656.
  • F. Mauri, N. Vast and C. J. Pickard: ‘Atomic structure of icosahedra B4C boron carbide from a first principles analysis of NMR spectra’, Phys. Rev. Lett., 2001, 87, (8), 1-4.
  • G. H. Kwei and B. Morosin: ‘Structures of boron rich boron carbides from neutron powder diffraction: implications for the nature of the Inter-icosahedral chains’, J. Phys. Chem., 1996, 100, 8031–8039.
  • D. D. Radev, B. Mihailova and L. Konstantinov: ‘Raman spectroscopy study of metal containing boron carbide based ceramics’, Solid State Sci., 2002, 4, 37–41.
  • H. K. Clark and J. L. Hoard: ‘The crystal structure of boron carbide’, J. Am. Chem. Soc., 1943, 65, 2115.
  • T. M. Duncan: ‘The distribution of carbon in boron carbide: a 13C nuclear magnetic resonance study’, J. Am. Chem. Soc., 1984, 106, 2270–2275.
  • J. E. Saal, S. Shang and Z. K. Liu: ‘The structural evolution of boron carbide via ab initio calculations’, App. Phys. Lett., 2007, 91, 231915-1-3.
  • A. H. Silver and P. J. Bray: ‘Nuclear magnetic resonance study of boron carbide’, J. Chem. Phys., 1959, 31, (1), 247.
  • M. M. Balkrishnarajan, P. D. Panchratna and R. Hoffman: ‘Structure and bonding in boron carbide: the invincibility of imperfections’, New J. Chem., 2007, 31, 473–485.
  • C. Wood and D. Emin: ‘Conduction mechanism in boron carbide’, Phys. Rev. B, 1984, 29B, (8), 4582.
  • R. Schmechel and H. Werheit: ‘Structural defects of some icosahedral boron-rich solids and their correlation with the electronic properties’, J. Solid State Chem., 2000, 154, 61–67.
  • U. Kuhlmann and H. Werheit: ‘On the microstructure of boron carbide’, Solid State Commun., 1992, 83, 849–852.
  • D. Ghosh, G. Subhash, T. S. Sudarshan, R. Radhakrishnan: ‘Dynamic indentation response of fine-grianed boron carbide’, J. Am. Ceram. Soc., 2007, 90, (6), 1850–1857.
  • X. Q. Yan, Z. Tang, L. Zhang, J. J. Guo, C. Q. Jin, Y. Zhang, T. Goto, J. W. McCauley and M. W. Chen: ‘Depressurization amorphization of single-crystal boron carbide’, Phys. Rev. Lett., 2009, 102, 075505-1-4.
  • D. Lezhava, G. Darsavelidze, D. Gabunia, O. Tsagareishvili, M. Antadze and V. Gabunia: ‘Influence of carbon content on physicomechanical characteristics of boron carbide’, J. Solid State Chem., 2006, 179, 2934–2938.
  • T. Matsui, Y. Arita, K. Naito and H. Imami: ‘High temperature heat capacities and electrical conductivities of boron carbides’, J. Nucl. Mater., 1991, 186, 7–12.
  • C. Wood, D. Emin and P. E. Gray: ‘Thermal conductivity of boron carbides’, Phys. Rev. B, 1985, 31B, (10), 6811.
  • K. E. Gilchrist and S. D. Preston: `Thermophysical property measurements on some neutron absorbing materials', High Temp. High Press., 1979, 11, 643–651.
  • G. S. Karumidze and L. A. Shengelia: ‘Isotopic effect of boron carbide thermal conductivity’, Diamond Relat. Mater., 1993, 3, 14–16.
  • K. Froment, D. Gosset, M. Guery, B. Kryger and C. Verdeau: ‘Neutron irradiation effects in boron carbides: evolution of microstructure and thermal properties’, J. Nucl. Mater., 1992, 188, 185–188.
  • F. J. Homan: ‘Performance modelling of neutron absorbers’, Nucl. Technol, 1972, 16, (1), 216–225.
  • Ph. Dunner, H. J. Heuvel, M. Horle: ‘Absorber materials for control rod systems of fast breeder reactors’, J. Nuc. Mater., 1984, 124, (C), 185-194.
  • T. Maruyama and T. Iseki: ‘Irradiation response and tritium release behaviour of boron carbide’, J. Nuc. Mater., 1985, 133-134, 727-731.
  • G. W. Hollenberg, W. V. Cummings: ‘Effect of fast neutron irradiation of the structure of boron carbide’, J. Am. Ceram. Soc., 1977, 60, (11-12), 520–525.
  • T. Kaito, T. Maruyama, S. Onose and H. Horiuchi: ‘Irradiation behavior of boron carbide neutron absorber’, available at: www.iaea. onatinisawsfnssfulltext0884_17.pdf
  • G. I. Copeland, C. K. H. Dubose, R. G. Donnelly and W. R. Martin: ‘Transmission electron microscopy of irradiated boron carbide’, J. Nucl. Mater., 1972, 43, 126–132.
  • G. L. Copeland, R. G. Donnelly and W. R. Martin: ‘Irradiation behavior of boron carbide’, Nulc. Technol, 1972, 16, (1), 226–237.
  • H. Inui, H. Mori and H. Fujita: ‘Electron irradiation induced crystalline to amorphous transition in boron carbide’, Scr. MetalL, 1988, 22, 249–254.
  • Y. Morohashi, T. Maruyama, T. Donomae, Y. Tachi and S. Onose: ‘Neutron irradiation effect on isotopically tailored 11134C’, J Nucl. ScL Technol, 2008 45, (9), 867–872
  • R. R. Ridgway: ‘Boron carbide and the method of making the same’, US patent no. 1897214, 1933.
  • M. T. Spohn: ‘Boron carbide’, Am. Ceram. Soc. Bull, 1993, 72, (6), 88.
  • G. Goller, C. Toy, A. Tekin and C. K. Gupta: ‘The production of boron carbide by carbothermic reduction’, High Temp. Mater. Proc., 1996, 15, (1-2), 117–122.
  • F. Schroll and A. Vogt: ‘Electrothermic production of boron carbide’, US patent no. 2 163 293, 1939.
  • J. J. Scott: ‘Arc furnace process for the production of boron carbide’, US patent no. 3 161 471, 1964.
  • R. R. Ridgeway: ‘Methods of making abrasive metal carbides’, US patent no. 2 155 682, 1939.
  • M. P. L. N. Rao, G. S. Gupta, P. Manjunath, S. Kumar, A. K. Sun, N. Krishnamurthy and C. Subramanian: ‘Temperature measurements in the boron carbide manufacturing process — a hot model study’, Int. J. Refract. Met. Hard Mater., 2009, 27, (3), 621–628.
  • M. P. L. N. Rao, G. S. Gupta, P. Manjunath, S. Kumar, A. K. Sun, N. Krishnamurthy and C. Subramanian: ‘Core temperature measurement in carbothermal reduction process’, Thermochim. Acta, 2009, 482, 66–71.
  • D. K. Bose, K. U. Nair and C. K. Gupta: ‘Production of high purity boron carbide’, High Temp. Mater. Proc., 1986, 7, (2-3), 133–140.
  • A. Alizadeh, E. T. Nassaj, N. Ehsani and H. R. Baharvandi: ‘Production of boron carbide powder by carbothermic reduction from boron oxide and petroleum coke or carbon active’, Adv. Appl. Ceram., 2006, 105, (6), 291–296.
  • A. Alizadeh, E. T. Nassaj and N. Ehsani: ‘Synthesis of boron carbide powder by a carbothermic reduction method’, J. Eur. Ceram. Soc., 2004, 24, 3227–3234.
  • C. Subramanian and A. K. Sun: ‘Development of boron based neutron absorber materials’, Met. Mater. Process., 2004, 16, (1), 39–52.
  • A. W. Weimer W. G. Moore R. P. Roach, J. E. Hitt, R. S. Dixit and S. E. Pratsinis: ‘Kinetics of carbothermal reduction synthesis of boron carbide’, J. Am. Ceram. Soc., 1992, 75, (9), 2509–2514.
  • B. Z. Dacic, V. Jokanovic, B. Jokanovic and M. D. Dramicanin: ‘Thermodynamics of gas phase carbothermic reduction of boron-anhydride’, J. Alloys Compd, 2006, 413, 198–205.
  • Yu. N. Tumanov: ‘The synthesis of boron carbide in a high frequency electromagnetic field’, J. Less Comm. Met., 1979, 67, 521–529.
  • W. Rafaniello and W. G. Moore: ‘Producing boron carbide’, US patent no. 4 804 525, 1989.
  • A. W. Weimer, W. G. Moore and R. P. Roach: ‘Method for producing uniform, fine boron containing ceramic powders’, US patent no. 5 194 234, 1993.
  • A. W. Weimer, W. G. Moore and R. P. Roach: ‘Apparatus for producing uniform fine ceramic powders’, US patent no. 5 110 565, 1992.
  • S. Herth, W. J. Joost, R. H. Doremus and R. W. Siegel: ‘New approach to the synthesis of nanocrystalline boron carbide’, J. Nanosci Nanotechn., 2006,6, (4), 954–959.
  • B. Chang, B. L. Gersten, S. T. Szewczyk and J. W. Adams: ‘Towards the preparation of boron carbide nanorods by carbothermal reaction method’, NSTI Nanotech 2006 Techn. Proc., 2006, 1, 369-372.
  • R. Ma and Y. Bando: ‘High purity single crystalline boron carbide nanowires’, Chem. Phys. Lett., 2002, 364, 314–317.
  • L. H. Bao, C. Li, Y. Tian, J. F. Tian, C. Hui, X. J. Wang, C. M. Shen and H. J. Gao: ‘Synthesis and photoluminescence property of boron carbide nanowires’, Chin. Phys. B, 2008, 17B, (12), 4585–4591.
  • F. F. Xu and Y. Bando: ‘Formation of two-dimensional nanomaterials of boron carbides’, J. Phys. Chem. B, 2004, 108B, 7651–7655.
  • C. H. Jung, M. J. Lee and C. J. Kim: ‘Preparation of carbon free B4C powder from B203 oxide by carbothermal reduction process’, Mater. Lett., 2004, 58, 609–614.
  • A. Aghai, C. Falamaki, B. E. Yekta and M. S. Afarani: ‘Effect of seeding on the synthesis of B4C by the magnesiothermic reduction route’, Ind Ceram., 2002, 22, (2), 121–125.
  • E. G. Gray: ‘Process for the production of boron carbide’, US patent no. 2 834 651, 1958
  • A. Muta and T. Geja: ‘Method for producing boron carbide’, US patent no. 3 338 679, 1967
  • T. A. Zhang Z. H. Dou, H. Yang and Q. L. Ding: ‘Preparation of boron carbide by magnesium reducing — SHS’, J. North Eastern Univ., 2003, 24, (10) 935–938.
  • A. K. Khanra and M. M. Godkhindi: ‘Synthesis of boron carbide by self —propagating high temperature synthesis’, J. Aust. Ceram. Soc., 2005, 41, (1), 30–35.
  • F. Deng, H. Y. Xie and L. Wang: ‘Synthesis of submicron B4C by mechanochemical method’, Mater. Lett., 2006, 60, (13-14), 1771–1773.
  • L. L Wang, Z. A. Munir and J. B. Holt: ‘The feasibility of synthesis of B4C fiber —MgO composites by combustion’, Scr. Metall. Mater., 1994, 31, (1), 93–97.
  • L. J. Berchmans, V. Mani and K. Amalajyothi: ‘Synthesis of boron carbide by calciothermic reduction process’, Int. J. Selfi propagat. High Temp. Synth., 2009, 18, (1), 60–63.
  • I. A. Bairamashvili: ‘Experience in production of articles from boron carbide for fast reactor control rods’, Proc. Techn. Committ. Meet. on ‘absorber materials, control rods and designs of backup reactivity shutdown systems for breakeven cores and burner cores for reducing plutonium stockpiles’, Obninsk, Russia, July 1995, International Atomic Energy Agency, IAEA-TEC DOC--884, 220-224.
  • X. Guangshan, Z. Ruxian, W. Yonglan and L. Shikun: ‘Control assembly to be used in CEFR’, Proc. Techn. Committ. Meet. on ‘absorber materials, control rods and designs of backup reactivity shutdown systems for breakeven cores and burner cores for reducing plutonium stockpiles’, Obninsk, Russia, July 1995, International Atomic Energy Agency, IAEA-TECDOC--884, 47-52.
  • A. W. Weimer: ‘Carbide, nitride and boride materials, synthesis and processing’, 89-95; 1997, London, Chapman & Hall.
  • K. U. Nair, D. K. Bose and C. K. Gupta: ‘The production of elemental boron by fused salt electrolysis’, Miner. Proc. Extract. Metall Rev., 1992, 9, 283–291.
  • A. Jain, S. Anthonysamy, K. Ananthasivan, R. Ranganathan, V. Mittal, S. V. Narsimhan and V. Mittal: `Charecterization of electrodeposited elemental boron', Mater. Charact., 2008, 59, 890–900.
  • E. M. Heian, S. K. Khalsa, T. Yamamoto and M. Ohyanagi: ‘Synthesis of dense, high-defect-concentration B4C through mechanical activation and field assisted combustion’, J. Am. Ceram. Soc., 2004, 87, (5), 779–783.
  • K. Yamada: ‘Boron carbide articles formed from an amorphous boron/graphite powder mixture using a shock wave technique’, J. Am. Ceram. Soc., 1996, 79, (4), 1113–1116.
  • J. Wei, B. Jiang, Y. Li, C. Xu and D. Wu: ‘Straight boron carbide nanorods prepared from carbon nanotubes’, J. Mater. Chem., 2002, 12, 3121–3124.
  • S. Chen, D. Z. Wang, J. Y. Huang and Z. F. Ren: ‘Synthesis and characterization of boron carbide nanoparticles’, Appl. Phys. A, 2004, 79A, (7), 1757–1759.
  • B. Chang, B. L. Gersten, S. T. Szewczyk and J. W. Adams: ‘Characterization of boron carbide nanoparticles prepared by a solid state thermal reaction’, Appl. Phys. A, 2007, 86A, 83–87.
  • S. T. Benton and R. David: ‘Methods for preparing boron carbide articles’, US patent no. 3 914 371, 1975.
  • A. S. Ramos, S. P. Taguchi, E. C. T. Ramos, V. L. Arantes and S. Ribeiro: ‘High energy ball milling of powder B-C mixture’, Mater. Sci Eng. A, 2006, 422A, (1-2), 184–188.
  • U. A. Tamburini, Z. A. Munir, Y. Kodera, T. Imai and M. Ohyanagi: ‘Influence of synthesis temperature on the defect structure of boron carbide: experimental and modeling studies’, J. Am. Ceram. Soc., 2005, 88, (6), 1382–1387.
  • R. G. Bourdio: ‘Process of preparing boron carbide from boron halide and a hydrocarbon’, US patent no. 3 334 967, 1967.
  • R. A. Clifton: ‘Production of boron carbide whiskers’, US patent no. 3 525 589, 1970.
  • E. W. James: ‘Catalyst for growth of boron carbide crystal whiskers’, US patent no. 3 423 179, 1969.
  • J. F. Ditter, F. J. Gerhart and R. E. Williams: ‘Boron carbide’, US patent no. 4 017 587, 1977.
  • I. M. MacKinnon and B. G. Reuben: ‘The synthesis of boron carbide in an RF plasma’, J. Electrochem. Soc., 1975, 122, (6), 806–811.
  • B. Zeng, Z. Feng, S. Li, Y. Liu, L. Cheng and L. Zhang: ‘Microstructure and deposition mechanism of CVD amorphous boron carbide coatings deposited on SiC substrates at low temperature’, Ceram. Int., 2009, 35, 1877–1882.
  • E. Wainer, S. Heights and M. S. Vukasovich: ‘Preparation of carbide structures’, US patent no. 3 269 802, 1966.
  • J. Economy, R. Y. Lin and W. D. Smith: ‘High strength yarn consisting of boron carbide fibers’, US patent no. 4 238 547, 1980.
  • M. Jazirehpour and A. Alizadeh: ‘Synthesis of boron carbide core- shell nanorods and a qualitative model to explain the formation of rough shell nanorods’, J. Phy. Chem., 2009, 113, 1657–1661.
  • M. Shu Fang, L. Jian, Z. Jun-Fu, S. Xiao-Xia and X. Bing-She: ‘Effect on graphite substrate to formation of boron carbide/ carbon composite nanoropes’ Chn J. Inorg. Chem. 2009, 25, (6), 1050–1054.
  • M. Karaman, N. A. Sezgi, T. Dogu and H. O. Ozbelge: ‘Kinetic investigation of chemical vapour depositionof B4C on Tungsten substrate’, AIChE 1, 2006, 52, (12), 4161-4166.
  • M. C. Schouler, M. C. Cheynet, K. Sestier, J. Garden and P. Gadelle: ‘New filamentous deposites in the boron-carbon system’, Carbon, 1997, 35, (7), 993–1000.
  • A. O. Sezer and J. I. Brand: ‘Chemical vapor deposition of boron carbide’, Mater. Sci. Eng. B, 2001, B79, 191-202.
  • M. J. Santos, A. J. Silvestre and O. Conde: `Laser-assisted deposition of r-B4C coatings using ethylene as carbon precursor', Surf Coat. Technot, 2002, 151-152, 160-164.
  • J. C. Oliveira, P. Paiva, M. N. Oliveira and O. Conde: ‘Laser-assisted CVD of boron carbide at atmospheric pressure’, Appl. Surf Sci, 1999, 138-139, 159-164.
  • J. C. Oliveira and O. Conde: ‘Deposition of boron carbide by laser CVD: a comparison with thermodynamic predictions’, Thin Solid Films, 1997, 307, 29–37.
  • H. Vincent, C. Vincent, M. P. Berthet, J. Bouix and G. Gonzalez: ‘Boron carbide formation from BC13—CH4—H2 mixtures on carbon substrates and in a carbon fibre reinforced Al composite’, Carbon, 1996, 34, (9), 1041–1055.
  • M. Olsson, S. Soderberg, B. Stridh and J. O. Carlsson: ‘Chemical vapour deposition of boron carbide: morphology and micro-structure’, Thin Solid Films, 1989, 172, (1), 95–109.
  • U. Jansson, J. O. Carlsson, B. Stridh, S. Soderberg and M. Olsson: ‘Chemical vapor deposition of boron carbides: phase and chemical composition’, Thin Solid Films, 1989,172, (1),81–93.
  • S. Mierzejewska and T. Niemyski: ‘Preparation of crystalline boron carbide by vapour phase reaction’, J. Less Comm. Met., 1965, 8, 368–374.
  • R. E. Riley, L. R. Newkirk F. A. Valencia, S, Wallace and C. Terry: ‘Preparation and uses of amorphous boron carbide coated substrates’, US patent no. 4 287 259, 1981.
  • R. L. Heetstand and C. F. Leitten: ‘Boron carbide article and method of making’, US patent no. 3 367 826, 1968.
  • J. G. Donaldson, J. B. Stephenson and A. A. Coachran: ‘Boron and boron carbide by vapor deposition’, Electrodepos. Surf Treat., 1973/1974, 2, 149–163.
  • J. Berjonneau, G. Chollon and F. Langlais: ‘Deposition process for amorphous boron carbide from CH4/BC13/H2 precursor’, J. Electrochem. Soc., 2006, 153, (12), C795—C800.
  • J. C. Oliveira, M. N. Oliveira and O. Conde: ‘Structural characterization of B4C films deposited by laser assisted CVD’, Surf Coat. TechnoL, 1996, 80, 100–104.
  • A. K. Knudsen and C. A. Langhoff: ‘Process for the preparation of submicron sized boron carbide powders’, US patent no. 4 895 628, 1990.
  • T. Oyama and K. Takeeuchi: ‘Gas-phase synthesis of crystalline B4C encapsulated in graphite particles by pulsed-laser irradiation’, Carbon 1999, 37, 433–436.
  • D. Zhang, D. N. Mcilroy, Y. Geng and M. G. Norton: ‘Growth and charactrization of boron carbide nanowires’, J Mater. Sci. Lett., 1999, 18, 349–351.
  • V. Cholet, R. Herbin and L. Vandenbulcke: ‘Chemical vapour deposition of boron carbide from BBr3—CH4.—H2 mixtures in a microwave plasma’, Thin Solid Films, 1990, 188, 143–155.
  • O. Postel and J. Heberlein: ‘Deposition of boron carbide thin film by supersonic plasma jet CVD with secondary discharge’, Surf Coat. TechnoL, 1998, 108-109, 247-252.
  • K. Kunihito, S. Tsutomu, P. C. Hoon and Y. Hiroaki: `CVD synthesis and thermoelectric properties of boron carbide', J. Ceram. Soc. Jpn, 1992, 100, (1162), 853–857.
  • T. S. Moss, L. W. Jack and K. L. More: ‘Chemical vapour deposition of B13C2 from BC13—CH4—H2—argon mixtures’, J. Am. Ceram. Soc., 1998, 81, (12), 3077–3086.
  • S. V. Deshpande, E. Gulari, S. J. Harris, A. M. Weiner and M. Anita: ‘Filament activated chemical vapor deposition of boron carbide coating’, Appl. Phys. Lett., 1994, 65, (14), 1757–1759.
  • I. Caretti, R. Gago, J. M. Albella and I. Jimenez: ‘Boron carbides formed by coevaporation of B and C atoms: 'Vapor reactivity, BxCi_x composition, and bonding structure’, Phys. Rev. B, 2008, 77B, 174109–1.
  • W. J. Lackey, D. Rosen, C. E. Duty, D. L. Jean, S. N. Bondi and T. N. Elkhatib: ‘Laser CVD system design operation, and modeling’, Ceram. Eng. Sci. Proc., 2002, 23, (4), 23–33.
  • H. O. Pierson: ‘Handbook of chemical vapor deposition: principles, technology and application’: 1992, Park Ridge, NJ, Noyes Publications.
  • K. Osberg, N. Schemm, S. Balkir, J. I. Brand, S. Hallbeck and P. Dowbent: ‘A hand-held neutron detection sensor system’, Proc. Int. Symp. on ‘Circuits and systems’, Island of Kos, Greece, May 2006, IEEE, 1179-1182.
  • S. Lee and P. A. Dowben: ‘The properties of boron carbide/silicon hetrojunction diodes fabricated by plasma-enhanced chemical vapor deposition’, Appl. Phys. A, 1994, 58A, 223–227.
  • D. Byun, S. D. Hwang, P. A. Dowben, F. K. Perkins, F. Filips and N. J. Ianno: Ileterojunction fabrication by selective area chemical vapor deposition induced by synchrotron radiation', Appl. Phys. Lett., 1994, 64, (15), 1968–1970.
  • S. D. Hwang, D. Byun, N. J. Ianno, P. A. Dowben and H. R. Kim: ‘Fabrication of boron—carbide/boron hetrojunction devices’, Appl. Phys. Lett., 1996, 68, (11), 1495–1497.
  • B. W. Robertson, S. Adenwalla, A. Harken, P. Welsch, J. I. Brand, P. A. Dowben, and J. P. Classen: ‘A class of boron —rich solid state neutron detectors’, Appl. Phys. Lett., 2002, 80, (19), 3644–3646.
  • S. Adenwalla, P. Welsch, A. Harken, J. I. Brand, A. Sezer and B. W. Robertson: ‘Boron carbide/n-silicon carbide heterojunction diodes’, Appl. Phys. Lett., 2001, 79, (26), 4357–4359.
  • G. L. Harris and D. S. Parsons: ‘Method of producing boron carbide from water alcohol solution of carbon source’, US patent no. 3 885 022, 1975.
  • S. Mondal and A. K. Banthia: ‘Low temperature synthetic route for boron carbide’, J. Eur. Ceram. Soc., 2005, 25, 287–291.
  • A. Sinha, T. Mahata and B. P. Sharma: Varbothermal route for preparation of boron carbide powder from boric acid-citric acid gel precursor', J. Nucl. Mater., 2002, 301, 165–169.
  • J. Economy and I. Matkowich: ‘Boron carbide fiber production’, US patent no. 3 825 469, 1974.
  • S. Cihangir, C. Ergun, S. Yilmaz and F. C. Sahin: ‘Synthesis of B4C/SiC composite from sugar based precursor’, Diffus. Defect Data A, 2008, 283-286A, 268-272.
  • I. Yanase, R. Ogawara and H. Kobayashi: ‘Synthesis of boron carbide powder from polyvinyl borate precursor’, Mater. Lett., 2009, 63, 91–93.
  • A. M. Hadian and J. A. Bigdeloo: ‘The effect of time, temperature and composition on boron carbide synthesis by sol-gel method’, J. Mater. Eng. Perform., 2008, 17, (1), 44 49.
  • H. Konno, A. Sudoh, Y. Aoki and H. Habazaki: ‘Synthesis of C/B4C composites from sugar—boric acid mixed solutions’, Mol Cryst. Lid. Crys. A, 2002, 386A, (1), 15–20.
  • I. Hasegawa, Y. Fujii, T. Takayama and K. Yamada: ‘Phenolic resin—boron oxide hybrids as precursors for boron carbide’, J. Mater. Sci Lett., 1999, 18, 1629–1631.
  • M. G. L. Mirabelli and L. G. Sneddon: ‘Synthesis of boron carbide via Poly vinylpentaborane precursors’, Am. Chem. Soc., 1988, 110, (10), 3305–3307.
  • H. Wada, S. Ito, K. Kuroda and C. Kato: ‘The synthesis of boron nitride and boron carbide by pyrolysis of boric acid/1,2,3-prpanetriol condensation product’, Chem. Lett., 1985, 14, (6), 691–692.
  • J. G. Joseph: ‘Process for depositing boron carbide’, US patent no. 3 480 467, 1969.
  • L. Shi, Y. Gu, L. Chen, Y. Qian, Z. Yang and J. Ma: ‘A low temperature synthesis of crystalline B4C ultrafine powders’, Solid State Commun., 2003, 128, 5–7.
  • Y. Gu, L. Chen, Y. Qian, W. Zhang and J. Ma: ‘Synthesis of nanocrystalline boron carbide via a solvothermal reduction of CC14 in the presence of amorphous boron powder’, J. Am. Ceram. Soc., 2005, 88, (1), 225–227.
  • C. Ronning, D. Schwen, S. Eyhusen, U. Vetter and H. Hofsass: ‘Ion beam synthesis of boron carbide thin films’, Surf Coat. TechnoL, 2002, 158-159, 382-387.
  • B. M. Todorovic, I. Draganic, D. Vasiljevic-Radovic, N. Romdevic, M. Romccevic, M. Dramicanin and Z. Markovic: ‘Synthesis of amorphous boron carbide by single and multiple charged boron ions bombardment of fullerene thin films’, Appl. Surf Sci, 2007, 253, 4029–4053.
  • M. Carlsson, F. J. G. Garcia, M. Johnsson: ‘Synthesis and characterization of boron carbide whiskers and thin elongated platelets’, J. Cryst. Growth, 2002, 236, 466–476.
  • R. V. Krishnarao and J. Subrahmanyam: ‘Studies on the formation of whiskers and platelets of B4C and BN’, J. Mater. Sci., 2004, 39, 6263–6269.
  • X. An, H. Zhai, H. Zhai, C. Cao and H. Zhu: ‘Synthesis and characterization of boron carbide nanobelts’, Key Eng. Mater., 2007, 336-338, (III), 2166-2168.
  • R. Ma and Y. Bando: ‘Investigation on the growth of boron carbide nanowires’, Chem. Mater., 2002, 14, 4403-4407. International Materials Reviews2010VOL 55NO 137
  • N. R. Thakkar and R. G. Reddy: ‘Thermal plasma processing of boron carbide fine powders’, Mater. Set Technol. 2003 Meet., 2003, 23, 47-60
  • J. L. He: ‘Carbon rich boron carbide in the eutectic product synthesized by resistance heating of B2CN in graphite’, J. Alloys Compd, 2007, 437, 238–246.
  • F. F. Lange: ‘Densification of powder compacts: an unfinished story’, J. Eur. Ceram. Soc., 2008, 28, (7), 1509–1516.
  • L. S. Dole, S Prochazka and R H. Doremus: `Microstructural coarsening during sintering of boron carbide', J. Am. Ceram. Soc., 1989, 72, (6), 958–966.
  • M. A. Kuzenkova, P. S. Kisly, B. L. Grabchuk and N. I. Bodnaruk: ‘Structure and properties of sintered boron carbide’, Powder Metall Int., 1980, 12, (1), 11–13.
  • M. A. Kuzenkova, P. S. Kislyi, B. L. Grabchuk and N. I. Bodnaruk: ‘The structure and properties of sintered boron carbide’, J. Less Comm. Met., 1979, 67, 217–223.
  • B. L. Grabchuk and P. S. Kislyi: ‘Some features of the sintering behavior of pure and technical boron carbide’, Soy. Powder Metall., 1976, 15, (9), 675–678.
  • H. Lee and R. F. Speyer: ‘Pressureless sintering of boron carbide’, J. Am. Ceram. Soc., 2003, 86, (9), 1468–1473.
  • R. F. Speyer and J. Lee: ‘Advances in pressureless densification of boron carbide’, J. Mater. Set, 2004, 39, 6017–6021.
  • X. Thu, K. Lu and K. Nagarathnam: ‘Compaction of different boron carbide powders using uniaxial die compaction and combustion driven compaction’, J. Mater. Set, 2009, 44, 414–421.
  • F. Thevenot: ‘Sintering of boron carbide and boron carbide-silicon carbide two-phase materials and their properties’, J. Nucl. Mater., 1988, 152, 154–162.
  • L. Levin, N. Frage and M. P. Dariel: ‘A novel approach for the preparation of B4C-based cermets’, Int. J. Refract. Met. Hard Mater., 2000, 18, 131–135.
  • N. Frage, L. Levin and M. P. Dariel: ‘The effect of the sintering atmosphere on the densification of B4C ceramics’, J. Solid State Chem., 2004, 177, 410–414.
  • K. A. Schwetz and W. Grellner: ‘The influence of carbon on the microstructure and mechanical properties of sintered boron carbide’, J. Less Comm. Met., 1981, 82, 37–47.
  • M. Bougoin and F. Thevenot: ‘Pressureless sintering of boron carbide with an addition of polycarbosilane’, J. Mater. Set, 1987, 22, (1), 104–109.
  • B. Y. Yin and L. S. wang: ‘Studies on activated sintering of jet milled B4C powders’, Atom. Energy Set Technot, 2003, 37, (Suppl.), 70-72, 76.
  • J. E. Zorzi, C. A. Perottoni and J. A. H. da Jornada: ‘Hardness and wear resistance of B4C ceramics prepared with several additives’, Mater. Lett., 2005, 59, 2932–2935.
  • T. K. Roy, C. Subramanian and A. K. Sufi: ‘Pressureless sintering of boron carbide’, Ceram. Int., 2006, 32, 227–233.
  • A. K. Sufi and C. K. Gupta: ‘Studies on the fabrication of aluminum bonded boron carbide rings’, J. Nucl. Mater., 1978, 74, 297–302.
  • H. R. Baharvandi, A. M. Hadian, H. Abdizade and N. Ehsani: ‘Investigation on addition of talc on sintering behavior and mechanical properties of 134C’, J. Mater. Eng. Perform., 2006, 15, (3), 280–283.
  • H. R. Baharvandi, A. M. Hadian, A. Abdizadeh and N. Ehsani: ‘Investigation on addition of Zr02-3 me/. Y203 powder on sintering behavior and mechanical properties of B4C’, J. Mater. Set, 2006, 41, 5269–5272.
  • L. Levin, N. Frage and M. P. Dariel: ‘The effect of Ti and TiO2 additions on the pressureless sintering of B4C’, Metall. Mater. Trans. A, 1999, 30A, 3201–3210.
  • A. Goldstein, Y. Yeshurun and A. Goldenberg: TX/metal boride composites derived from B4C/metal oxide mixtures', J. Eur. Ceram. Soc., 2007, 27, (2-3), 695–700.
  • C. H. Lee and C. H. Kim: ‘Pressureless sintering and related reaction phenomena of A1203-doped B4C’, J. Mater. Set, 1992, 27, (23), 6335–6340.
  • L. S. Sigl: ‘Processing and mechanical properties of boron carbide sintered with TiC’, J. Eur. Ceram. Soc., 1998, 18, 1521–1529.
  • S. Prochazka and B. Lake: ‘Dense sintered boron carbide containing beryllium carbide’, US patent no. 4005235, 1977.
  • G. Q. Weaver: ‘Sintered high density boron carbide’, US patent no. 4 320 204, 1982.
  • S. Yamada, K. Hirao, Y. Yamauchi and S. Kanzaki: ‘Densification behaviour and mechanical properties of pressure-less-sintered B4C-CrB2 ceramics’, J. Mater. Set, 2002, 37, 5007–5012.
  • S. Yamada, K. Hirao, Y. Yamachi and S. Knzaki: ‘Sintering behaviour of B4C-CrB2 ceramics’, J. Mater. Set Lett., 2002, 21, 1445–1447.
  • R. F. Speyer and H. Lee: ‘Improved pressureless densification of B4C’, Ceram. Trans., 2003, 151, 71–82.
  • B. Y. Yin, L. S. Wang and Y. C. Fang: ‘Sintering mechanism of pure and carbon-doped boron carbide’, J. Chin. Ceram. Soc., 2001, 29, (1), 68–71.
  • K. A. Schwetz, G. Vogt and K. S. Mang: ‘Process for the production of dense sintered shaped articles of polycrystalline boron carbide by pressureless sintering’, US patent no. 4 195 066, 1980.
  • N. Cho, K. G. Silver, Y. Berta, R. F. Speyer, N. Vanier and C. H. Hung: ‘Densification of carbon-rich boron carbide nanopowder compacts’, J. Mater. Res., 2007, 22, (5), 1354–1359.
  • A. Matsumoto, T. Goto and A. Kawakami: ‘Slip casting and pressureless sintering of boron carbide and its application to the nuclear field’, J. Ceram. Soc. Jpn, 2004, 112, (5), S399—S402.
  • R. N. J. Taylor: ‘Novel powder processing of sintered boron carbide’, Key Eng. Mater., 2004, 45-48, 264-268.
  • R, Telle and G. Petzow: ‘Strengthening and toughning of boride and carbide hard material composites’, Mater. Set Eng. A, 1988, A105/106, 97-104.
  • K. T. Faber and A. G. Evans: ‘Crack deflection processes — I. Theory’, Acta Metall. 1983, 31, (4), 565–576.
  • H. R. Baharvandi and A. M. Hadian: ‘Pressureless sintering of TiB2—B4C ceramic matrix composite’, J. Mater. Eng. Perform., 2008, 17, (6), 838–841.
  • VI. V. Skorokhod and V. D. Krstic: ‘Processing, microstructure and mechanical properties of B4C—TiB2 particulate sintered composites. I. Pressureless sintering and microstructure evolu-tion’, Powder Metall Met. Ceram., 2000, 39, (7-8), 414–423.
  • V. V. Skorokhod, M. D. Vlajic and V. D. Krstic: ‘Pressureless sintering of B4C—TiB2 ceramic composites’, Mater. Set Forum, 1998, 282-283, 219-224.
  • V Skorokhod, M. D. Vlajic and V. D. Krstic: ‘Mechanical properties of pressureless sintered boron carbide containing TiB2 phase’, J. Mater. Set Lett., 1996, 15, 1337–1339.
  • V. Skorokhod and V. D. Krstic: ‘Processing, microstructure and mechanical properties of B4C—TiB2 particulate sintered compo-sites. II. Fracture and mechanical properties’, Powder Metall. Met. Ceram., 2000, 39, (9-10), 504–513.
  • M. D. Vlajic and V. D. Kristic: ‘Process for the production of dense boron carbide and transition metal borides’, US patent no. 5 720 910, 1998.
  • L. Sigl, H. Thaler and K. A. Schwetz: ‘Process for producing bodies based on boron carbide by pressureless sintering’, US patent no. 5 505 899, 1996.
  • B. Khazai and W. G. Moore: ‘composition and method for producing boron carbide/titanium diboride composite ceramic powders using a boron carbide substrate’, US patent no. 5 108 962, 1992.
  • C. Subramanian, T. K. Roy, T. S. R. Ch. Murthy, P. Sengupta, G. B. Kale, M. V. Krishnaiah and A. K. Sufi: ‘Effect of Zirconia addition on pressureless sintering of boron carbide’, Ceram. Int., 2008, 34, 1543–1549.
  • Q. Lin, P. Shen, F. Qiu, D. Zhang and Q. Jiang: ‘Wetting of polycrystalline B4C by molten Al at 1173-1473 K’, Ser. Mater., 2009, 60, 960–963.
  • C. H. Danny, J. P. Aleksander, A. A. Ilhan and E. S. William: ‘Processing of boron carbide-aluminum composites’, J. Am. Ceram. Soc., 1989, 72, (5), 775–780.
  • P. Kewu, W. Wenyuan, X. Jingyu, T. Ganfeng and N. Fuhu: ‘Study on mechanical properties and fracture mechanisms of B4C—CeB6/A1 composites’, J. Rare Earth, 2007, 25, (suppl.), 77-81.
  • K. M. Taylor, N. Falls and R. J. Palicka: ‘Dense carbide composite for armor and abrasives’, US patent no. 3 765 300, 1973.
  • S. Hayun, A. Weizmann, M. P. Dariel and N. Frage: ‘The effect of particle size distribution on the microstructure and the mechanical properties of boron carbide based reaction bonded composites’, Int. J. AppL Ceram. Technot, 2009, 6, (4), 492–500.
  • D. Mallick, T. K. Kayal, J. Ghosh, O. P. Chakrabarti, S. Biswas and H. S. Maiti: ‘Development of multi-phase B—Si—C ceramic composite by reaction sintering’, Ceram. Int., 2009, 35, (4), 1667–1669.
  • Z. F. Chen, Y. C. Su and Y. B. Cheng: ‘Formation and sintering mechanisms of reaction bonded silicon carbide—boron carbide composites’, Key Eng. Mater., 2007, 352, 207–212.
  • J. Y. Liu, C. P. Zou, W. S. Zha, G. H. Liu, J. Lan and Q. H. Feng: ‘Effect of sintering temperature on microstructure and compres-sive strength of B4C—A1Si eutectic alloy’, Nucl. Power Eng., 2008, 29, (2), 58-60, 104.
  • M. Aizenshtein, I. Mizrahi, N. Froumin, S. Hayun, M. P. Dariel and N. Frage: ‘Interface interaction in the B4C/(Fe—B—C) system’, Mater. Sci. Eng. A, 2008, A495, 70-74.
  • I. Mizrahi, A. Raviv, H. Dilman, M. Aizenshtein, M. P. Dariel and N. Frage: ‘The effect of Fe addition on processing and mechanical properties of reaction infiltrated boron carbide-based composites’, J. Mater. Sci., 2007, 42, 6923–6928.
  • M. K. Aghajanian, A. L. McCormick, B. N. Morgan and A. F. Liszkiewicz: ‘Boron carbide composite bodies, and methods for making same’, US patent no. 0 169 128 Al, 2006.
  • S. Hayun, D. Rittel, N. Frage and M. P. Dariel: ‘Static and dynamic mechanical properties of infiltrated B4C—Si composites’, Mater. Sci. Eng. A, 2008, 487, 405–409.
  • G. T. Burns, G. A. Zankm and J. A. Ewald: ‘Preparation of high density boron carbide ceramics with preceramic polymer binders’, US patent no. 5 545 687, 1996.
  • K Hirao, S. Sakaguchi, Y Yamauchi, S Kanzaki and S Yamada: ‘Boron carbide based sintered compact and method for prepara-tion thereof’, US patent no. 0063583, 2008.
  • P. F. Jahn: ‘Use of alumina alone or with silica as sintering aid for boron carbide’, US patent no. 3 632 710, 1972.
  • B. Y. Yin and L. S. Wang: ‘Study on physical properties of hot-pressing sintered B4C ceramic’, Atom. Energy Sci. Technol, 2004, 38, (5), 429–431.
  • M. S. Koval'chenko, Yu. G. Tkachenko, L. F. Ochkas, D. Z. Yurchenko and V. B. Vinokurov: ‘Densification kinetics of boron carbide in hot pressing’, Soy. Powder Metall Met. Ceram., 1987, 26, (11), 881–884.
  • I. T. Ostapenko, V. V. Slezov, R. V. Tarasov, N. F. Kartsev and V. P. Podtykan: ‘Densification of boron carbide powder during hot pressing’, Soy. Powder Metall Met. Ceram., 1979, 18, (5), 312–316.
  • R. Angers and M. Beauvy: ‘Hot-pressing of boron carbide’, Ceram. Int., 1983, 10, (2), 49–55.
  • G. I. Kalandadze, S. O. Shalamberidze and A. B. Peikrishvili: ‘Sintering of boron and boron carbide’, J. Solid State Chem., 2000, 154, 194–198.
  • B. Champagne and R. Angers: ‘Mechanical properties of hot-pressed B-B4C materials’, J. Am. Ceram. Soc., 1979, 62, (3-4), 149–153.
  • K. Hirao, S. Sakaguchi, Y. Yamauchi, S. Kanzaki and S. Yamada: ‘Boron carbide based sintered compact and method for prepara-tion thereof’, US patent no. 0 059 541 Al, 2005.
  • V. Skorokhod, Jr and V. D. Krstic: ‘High strength-high toughness B4C—TiB2 composites’, J. Mater. Sci. Lett., 2000, 19, 237–239.
  • H. Hofmann and G. Petzow: ‘Structure and properties of reaction hot-pressed B4C—TiB2—W2B5 materials’, J. Less Comm. Met., 1986, 117, 121–127.
  • J. Deng, J. Thou, Y. Feng and Z. Ding: ‘Microstructure and mechanical properties of hot-pressed 134C/(W,TOC ceramic composites’, Ceram. Int., 2002, 28, 425–430.
  • D. Jianxin and S. Junlong: ‘Microstructure and mechanical properties of hot-pressed B4C/TiC/Mo ceramic composites’, Ceram. Int., 2009, 35, 771–778.
  • S. Yamada, K. Hirao, Y. Yamauchi and S. Kanzaki: ‘134C—CrB2 composites with improved mechanical properties’, J. Eur. Ceram. Soc., 2003, 23, 561–565.
  • T. Vasilos and S. K. Dutta: ‘Low temperature hot pressing of boron carbide and its properties’, Am. Ceram. Soc. Bull, 1974, 53, (5), 453–454.
  • D. Jianxin: ‘Erosion wear of boron carbide ceramic nozzles by abrasive air-jets’, Mater. Sci. Eng. A, 2005, A408, 227-233.
  • B. Mu, L. Tang, H. Zhang, W. Yan, T. Yin and T. Zhang: ‘Influence of the rare-earth oxide on the properties of boron carbide ceramics’, Powder Metall. Technol., 2008, 26, (3), 187-191, 195.
  • B. Mikijelj, G. Victor and K. A. Schwetz: ‘Lightweight boron carbide materials with improved mechanical properties and process for their manufacture’, US patent no. 0 010 391 A, 2007.
  • T. Maruyama and S. Onose: ‘Fabrication and thermal conductiv-ity of boron carbide/copper cermet’, J. Nucl. Sci. Technol., 1999, 36, (4), 380–385.
  • T. Jiang, Z. Jin, J. Yang and G. Qiao: ‘Investigation on the preparation and machinability of the B4C/BN nanocomposites by hot-pressing process’, J. Mater. Proc. Technol., 2009, 209, 561–571.
  • T. Jiang, Z. Jin, J. Yang and G. Qiao: ‘Wear resistance of silicon infiltrated B4C/BN composites’, Mater. Lett., 2008, 62, 4559–4562.
  • S. Yamada, K. Hirao, Y. Yamauchi and S. Kanzaki: ‘Mechanical and electrical properties of B4C—CrB2 ceramics fabricated by liquid phase sintering’, Ceram. Int., 2003, 29, 299–304.
  • M. S. Koval'chenko, Yu. G. Tkachenko, V. V. Koval'chuk, D. Z. Yurchenko, S. V. Satanin and A. I. Kharlamov: ‘Structure and properties of hot-pressed boron carbide base ceramics’, Soy. Powder Metall Met. Ceram., 1990, 29, (7), 523–526.
  • C. H. Jung and S. J. Lee: ‘Machining of hot pressed alumina-boron carbide composite cutting tool’, Int. J. Refract. Met. Hard Mater., 2005, 23, 171–173.
  • B. Y. Yin and L. S. Wang: ‘Study on mechanical strength of the hot-pressing sintered boron carbide’, Atom. Energy Sci. Technol., 2004, 38, (6), 522–525.
  • http:www.atozofmaterials.com
  • B. Matchen and D. Robertson: ‘Boron carbide ballistic armour modified with chromium and/or boron’, US patent no. 3 729 372, 1973.
  • S. Tuffe, J. Dubois, G. Fantozzi and G. Barbier: ‘Densification, microstructure and mechanical properties of TiB2-B4C based composites’, Int. J. Refract. Met. Hard Mater., 1996, 14, 305–310.
  • G. Petzow, H. Hofmann and K. Weiss: ‘Process for the preparation of carbide-boride products’, US patent no. 4 670 408, 1987.
  • K. F. Cai, C. W. Nan, M. Schumecker and E. Mueller: ‘Microstructure of hot pressed B4C—TiB2 thermoelectric compo-sites’, J Alloys Compd, 2003, 350, 313–318.
  • A. Li, Y. Then, Q. Yin, L. Ma and Y. Yin: ‘Microstructure and properties of (SiC,TiB2)/B4C composites by reaction hot pressing’, Ceram. Int., 2006, 32, 849–856.
  • J. H. Han, S. W. Park and Y. D. Kim: ‘Reaction synthesis and mechanical properties of B4C-based composites’, Mater. Sci. Forum, 2007, 534-536, 917-920.
  • M. Yokouchi: ‘Effect of Mo content on mechanical properties of B4C(W,Mo)B2 hard material’, J. Jpn Soc. Powder Powder Metall, 1999, 47, (1), 23–29.
  • M. Yokouchi: ‘Effect of B content on mechanical properties of B4C(W,Mo)B2 hard material’, J. Jpn Soc. Powder Powder Metall, 2001, 48, (7), 660–664.
  • O. N. Grigor'ev, V. V. Kovalchuk, O. I. Zaporozhets, N. D. Bega, B. A. Galanov, E. V. Prilutskii, V. A. Kotenko, T. N. Kutran and N. A. Dordienko: ‘Synthesis and physicomechanical properties of B4C—VB2 composites’, Powder Metall Met. Ceram., 2006, 45, (1-2), 47–58.
  • P. A. D. S. L. Cosention, C. A. Costa, J. B. De Campos and R. R. De Avillez: ‘Hot pressing of boron carbide using metallic carbides as additives’, Ceram. Eng. Sci. Proc., 2008, 28, (5), 135–141.
  • D. Jianxin and S. Junlong: ‘Sand erosion performance of B4C based ceramic nozzles’, Int. J. Refract. Met. Hard Mater., 2008, 26, 128–134.
  • T. Jiang, Z. Jin, J. Yang and G. Qiao: ‘Property and microstructure of machinable B4C/BN nanocomposites’, Key Eng. Mater., 2008, 368-372, (1), 936-939.
  • Z. Panek: ‘The synthesis of SiC-B4C ceramics by combustion during hot-pressing’, J. Eur. Ceram. Soc., 1993, 11, 231–236.
  • J. J. Petrovic, K. J. McClellan, C. D. Kise, R. C. Hoover and W. K. Scarborough: ‘Functionally graded boron carbide’, Ceram. Eng. Sci. Proc., 1998, 19, (4), 387–393.
  • K. S. Singhal and B. P. Singh: ‘Sintering of boron carbide under high pressures and temperatures’, Ind J. Eng. Mater. Sci., 2006, 13, (2), 129–134.
  • T. L. Hans: ‘Hot isostatic pressing of ceramic powders to dense ceramic parts’, Ind Heat., 1984, 51, (1), 39-40, 42.
  • T. L. Hans: ‘Dense ceramic parts hot pressed to shape by HIP’, Mater. Sci. Res., 1984, 17, 571–582.
  • P. Larsson, N. Axen and S. Hogmark: ‘Improvements of the microstructure and erosion resistance of boron carbide with additives’, J. Mater. Sci., 2000, 35, 3433–3440.
  • N. Cho, Z. Bao and R. F. Speyer: ‘Density-and hardness-optimized pressureless sintered and pot-hot isostatic pressed B4C’, J. Mater. Res., 2005, 20, (8), 2110–2116.
  • N. Cho: ‘processing of boron carbide’, PhD thesis, School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, USA, 2006.
  • R. F. Speyer and E. A. Judson: ‘New process makes complex-shaped armor a reality’, Am. Ceram. Soc. Bull, 2006, 85, (3), 21–23.
  • K. A. Schwetz, W. Grellner and A. Lipp: ‘Mechanical properties of HIP treated sintered boron carbide’, Inst. Phys. Conf Ser., 1986, 75, 413–426.
  • K. A. Schwetz, L. S. Sigl and L. Pfau: ‘Mechanical properties of injection molded B4C-C ceramics’, J. Solid State Chem., 1997, 133, 68–76.
  • M. H. Bocanegra-Bernal: ‘Hot isostatic pressing (HIP) technology and its applications to metals and ceramics’, J. Mater. ScL, 2004, 39, (21), 6399–6420.
  • F. Zimmerman and J. Toops: ‘Hot isostatic pressing (HIP) technology’, Ind. Heat., 2006, 73, (8), 71–74.
  • T. Fujikawa, Y. Manabe, M. Yoneda, S. Kofune and T. Nakai: ‘Recent trends of HIP equipment technology in Japan’, ASME PubL PVP, 2004, 473, 27–31.
  • S. H. Yoo, K. M. Sethuram and T. S. Sudarshan: ‘Apparatus for bonding a particle material to near theoretical density’, US patent no. 5 989 487, 1999.
  • B. Klotz, K. Cho, R. J. Dowding and S. D. Sisson: ‘Characterization of boron carbide consolidated by the plasma pressure compaction (P2C) method in air’, Ceram. Eng. ScL Proc., 2001, 22, (4), 27–34.
  • B. R. Klotz, K. C. Cho and R. J. Dowding: ‘Sintering aids in the consolidation of boron carbide (B4C) by the plasma pressure compaction (P2C) method’, Mater. Manuf Process., 2004, 19, (4), 631–639.
  • N. Frage, S. Hayun, S. Kalabkhov and M. P. Dariel: ‘The effect of Fe addition on the densification of B4C powder by spark plasma sintering’, Powder Metall Met. Ceram., 2007, 46, (11-12), 533–538.
  • Y. Kodera, N. Isibashi, T. Imai, T. Yamamoto, M. Ohyanagi, U. Anselmi-Tamburini and Z. A. Munir: ‘Spark plasma sintering of less-crystallized boron carbide with defects’, Ceram. Trans., 2006, 194, 101–111.
  • C. B. Wang, S. Zhang, Q. Shen and L. M. Zhang: ‘Investigation on reactive sintering process of boron carbide ceramics by XRD’, Mater. Set Technot, 2009, 25, (6), 809–812.
  • S. Zhang, R. Yang, Q. Shen, C. B. Wang and L. M. Zhang: ‘Synthesis and densification of B-C ceramics by spark plasma sintering’, J. Syn. Cryst., 2007, 36, (3), 672–674.
  • D. M. Hulbert, D. Jiang, U. Anselmi-Tamburini, C. Unuvar and A. K. Mukherjee: 'Experiments and modeling of spark plasma sintered, functionally graded boron carbide-aluminum compo-sites', Mater. Set Eng. A, 2008, A488, 333-338.
  • Y. Ling, C. Ge, J. Li and X. Bai: ‘Processing and characterization of B4C/Cu graded composite as plasma facing component for fusion reactors’, J. Univ. Set Technot Beijing, 2003, 10, (1), 39–43.
  • D. Agrawal: ‘Microwave sintering of metals’, Mater. World, 1999, 7, (11), 672–673.
  • A. Goldstein, R. Ruginets and L. Geifman: ‘Carbide matrix composites by fast MW reaction-sintering in air of B4C—SiC—Al mixtures’, Ceram. Int., 2008, 35, (3), 1297–1300.
  • I. Bogomol, T. Nishimura, O. Vasylikiv, Y. Sakka and P. Loboda: ‘Microstructure and high-temperature strength of B4C—TiB2 composite prepared by a crucibleless zone melting method’, J. Alloys Compd, 2009, 458, (1-2), 677–681.
  • C. Zhang, X. Huang, Y. Yin, F. Xia, J. Dai and Z. Thu: ‘Preparation of boron carbide-aluminum composites by non-aqueous gelcasting’, Ceram. Int., 2009, 35, 2255–2259.
  • W. M. Goldberger, A. K. Reed and R. Morse: ‘Synthesis and characterization of HSC silicon carbide’, Proc. Conf. Silicon Carbide '87, (ed. J. D. Cawley), 93-104; 1987, Westerville, OH, The American Ceramic Society.
  • M. Steinbruck, A. Meier, E. Nold and U. Stegmaier: ‘Degradation and oxidation of B4C control rod segments at high temperatures’, Institut fur Materialforschung, Programm Nukleare Sicherheitsforschung, Forschungszentrum Karlsruhe GmbH, Karlsruhe, Germay, 2004.
  • M. Steinbruck: ‘Oxidation of boron carbide at high temperatures’, J. Nucl. Mater., 2005, 336, 185–193
  • H. Steiner: ‘Modelling of boron carbide oxidation in steam’, J. Nucl. Mater., 2005, 345, 75–83.
  • R. Zehringer, H. Kunzli and P. Oelhafen: ‘Oxidation behaviour of boron carbide’, J. Nucl. Mater., 1990, 176/177, 370–374.
  • D. Radev and Z. Zahariev: ‘Oxidation stability of B4C—MexBy composite materials’, J. Alloys Compd, 1993, 197, 87–90.
  • O. N. Grigorev, T. V. Dubovik, N. D Bega, V. A. Kotenko, V. M. Panashenko, V. I. Lyashenko, A. A. Rogozinskaya and L. I. Chernenko: ‘Sintered ceramics based on boron nitride and carbide’, Powder MetalL Met. Ceram., 2007, 46, (1-2), 46–50.
  • J. Rodel, A. B. N. Kounga, M. Weissenberger-Eibl, D. Koch, A. Bierwisch, W. Rossner, M. J. Hoffmann, R. Danzer and G. Schneider: ‘Development of a roadmap for advanced ceramics: 2010-2025’, J. Eur. Ceram. Soc., 2009, 29, 1549–1560.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.